|
Privacy Policy
You can now take a tour of posts in the Ask Aaron Archives that have been referenced to answer new questions -- let's call them Less Frequently Asked Questions. Click the 'Mystery Post Tour' button above to get started.
Channel Trims Won't Help
Q: I'm basically brand new to combat robotics and I'm currently building a 1lb ant weight robot and just started testing with driving. When I throttle forward my left wheel starts moving before my right wheel does and vice versa happens when I attempt to go backwards. I'm using a FS-i6, a scorpion nano dual esc, and repeat robotics brushed motors. Ive also tried to mess around with trimming but haven't had any success. Any help would be appreciated!
A: [Mark J.] The channel trims won't fix your problem. With channel mixing in place you need to tweek the individual receiver output ports using your FS-i6 sub-trims.
Left Weapon Spins Clockwise
Q: Hello. I was examining a previous question about the successful 3 lb robot Droopy regarding how it produces motion through torque reaction and gyroscopic precession. I have some questions:
1. Let's say my layout uses a two-blade system akin to Droopy's that spins the left blade counterclockwise and the right blade clockwise. Would the body spin clockwise (right) due to the conservation of angular momentum when the left blade is given more power than the right, and the body counterclockwise if the right is given more power? I want to make sure my understanding of the post is correct before continuing.
A: [Mark J.] I think I may be responsible for your confusion. My original description of Droopy's locomotion had an error in the direction of weapon spin. I promptly corrected that description in the Ask Aaron Design and Construction archive, but I suspect you were reading a copy of the original version that I had overlooked in the 'Ants, Beetles, and Fairys' archive. I corrected that version today.
Here's the correct description as given to me by Droopy's builder Tommy Wong:
Acceleration of the blade on the left side (clockwise rotation) causes the right side to lift up and pivot due to the simultaneous effect of two variables:
2. If I were to program this robot such that I could flip a switch or push the throttle to make the weapons spin in the intended directions (at say, a constant 50% power), and use the aileron to shift the power from (50% left, 100% right) to (100% left, 50% right), how would I set it up/go about doing so? Is this even remotely possible?
A: Most transmitters are capable of this type of multi-channel mixing. It is essentially a simple(?) modification to the standard robot Elevon mix. A transmitter using OpenTX or EdgeTX firmware would have a very different setup than say a FlySky FS-i6, but such a control scheme is entirely do-able. If you tell me what transmitter you have and where you want the controls located, I can assist.
Sorry if the hamburger is bad. Thank you for your time. The hamburger is fine and you are welcome. My apologies for causing your confusion. Q: Hi, gyro walker person from yesterday here. 1. I originally had the spin direction opposite that of Droopy's (left CCW & right CW rather than left CW & right CCW), but in hindsight there must be some merit to spinning the blades in the latter directions given Droopy's success, so let's use that as a reference. A: There is considerable merit to spinning the blades in the directions used by Droopy. You can try the reverse directions to see the result but I don't think you'll like it.
2. While I don't have the transmitter on hand, I plan on using the FlySky FS-i6. This is a rough idea of my proposed control layout:
A: I feared you would want to do this with a FlySky FS-i6. The available pre-programmed mixes assume reversing ESCs with "off" in the center, but you'll be using single-direction ESCs that interpret the output from a spring-centered joystick as 50% throttle. For safety purposes we can't have your 'bot snap to 50% throttle on two spinner weapons as soon as the transmitter is turned on. To safely attain the precise controls you've specified we'll need to use custom mixes. The FS-i6 has only three custom mixes -- that may not be enough...
Three Hours Later...
OK, I think I've got it. I don't have a FS-i6 in my workshop at the moment so I'm unable to test, but it works on paper. Suggest you read thru my FlySky FS-i6 Combat Programming Guide to become familiar with navigating the FS-i6 menu system and the processes for entering new values into the function fields.
This limits the "throttle" stick input to 50%.
This prevents unintentional "rudder" input from impacting the motor speeds.
This mirrors the "throttle" stick output to receiver ports 3 and 4.
This adds throttle to the left motor when the "aileron" stick is moved left of center.
This adds throttle to the right motor when the "aileron" stick is moved right of center.
Reply: Hi. Thank you so much for answering my torque reaction walker inquiries. I know it was probably a hassle, but I greatly appreciate your help and commitment to this website.
Response: You are very welcome. I enjoy a good challenge, and I have a need to pay back the combat robot community for the help given to me when I needed assistance.
I've received a bit of feedback on my proposed mixes that confirms the approach is correct. I've annotated the mixes above with possible improvements. Still waiting on actual confirmation from someone with an FS-i6 in hand -- stay tuned.
My Frustrations
Q: Power consumption [Tamil Nadu, India]
30 seconds later...
Q: How to calculate average power consumption
A: [Mark J.] I no longer answer questions from builders competing in India due to serious safety concerns for builders and spectators at many robot combat events in the region.
I am also frustrated by my interactions with Indian builders. Here is a 2021 post from the Ask Aaron Archives that both answers the current question and illustrates my frustrations:
A: [Mark J.] You have not provided enough information to calculate the requested answer. The hamburger is bad. See: Example Drivetrain Analysis using the Tentacle Torque Calculator for the information and process required to define motor loading and calculate the battery requirement.
A few hours later...
Q: Sir I want to select a battery for Robowar in I am using 2 propdrive 50-60 motor each on 200amp on 22.2v for weapon and 2 R997 motor on 60amp each on 22.2v for drive motor for 66 lbs category and total total time should be active is 6 minutes please answer my question sir
A: You didn't bother to read the link I provided, did you? A quick summary: current drawn by electric motors is proportional to the loading placed on them. You have information about your motors, but you need to know the wheel size, drive gear reduction, and physical details about your weapon in order to estimate motor loading.
Ask Aaron is not a free engineering service. We provide tools and information needed to solve your robot design and construction calculations, but we won't do your homework for you. Since you aren't willing to use the tools or instructions provided by Ask Aaron, you might learn something by watching Robert Cowan go thru his process of estimating battery capacity requirements for a robot with a large spinner weapon: Robert Cowan Video: Battery Capacity Calculations
A: [Mark J.] I answered this question from another builder a few weeks ago. From the archives:
I have followed the steps for dual motor robot control on my FS-i6X transmitter and it mostly seems to work as it should. My biggest issue is that I must go through the set up every time I turn on the transmitter. This is very annoying as I have quite a few adjustments to make it to get the custom settings I want. Then as soon as I cycle the TX off and back on, the settings are wiped out and I must do them all over again.
A possibly related oddity, when I follow the "Quick and Dirty Set-up" directions I have nothing on receiver ports 1 and 2. I must instead plug my motor controller into ports 3 and 4.
Any idea why the settings are not being saved or why the output signals are going to ports 3 and 4? Any help is greatly appreciated. [Direct Email]
A: [Mark J.] The FlySky FS-i6 has a remarkable range of features for such an inexpensive transmitter, but quality control may suffer a bit at their very low price point. Sometimes you get a bad one, and I believe you have a bad transmitter.
I see an occasional mention of an FS-i6 transmitter that will fail to save settings in the way you report. Here is a video from someone looking for a solution to that problem. However, having an Elevon mix appearing on receiver ports 3-4 rather than 1-2 is both new and very strange.
This behavior is not normal. I would return the radio to the seller for replacement. If it is not practical to return the radio there are a couple of actions worth trying:
I read somewhere that my transmitter might be in "drone" mode and I need to program it into "robot" mode, but everything was fine with my antweight. Is there an alternative solution?
A: [Mark J.] The problem is that your old transmitter and new ESC are both providing the channel mixing needed for single-stick control:
Different models of Scorpion ESCs have different methods of disabling the MIX option:
A: [Mark J.] The requirement for a power indicator is typically something similar to the SPARC ruleset section 8.6:
If you want a discrete power LED you do not need a protective case, just mount it out of the way.
You can certainly construct your own indicator light but the components (plug, cable, resistor, LED) are difficult to purchase in small quantities and some calculation is needed to select the correct resistor value. Itgresa.com offers Robot Power LEDs with a cable that can be plugged into an unused port on your receiver. Six colors, easy to mount, wide voltage range, cheap. Buy a couple and keep one as a spare.
A: [Mark J.] Thank you for your kind greeting. All is well for us here at the Run Amok homestead, and I hope the same for you.
Until recently my general advice on fighting spaghetti was to get your soldering skills up to where you weren't afraid to cut all those wires down to their shortest possible lengths. That helped clutter and also saved a surprising amount of weight.
But now you can take that up another level. Just 'Cuz Robotics produces a wide range of custom power distribution boards for small robots that range from simple connector organizers to full "motherboards" with BECs, power switches, power lights, servo support, and receiver integration. If you crave clean and neat you'll find all you need there.
A: [Mark J.] It is the nature of combat robotics to push components well beyond their design limits.
The connectors themselves are usually less an issue than the length of wire attached to them. A three-wire receiver cord that weighs a tenth of an ounce at rest can exert well more than a pound of force under the acceleration forces referenced above. Tie your wires off as close to the receiver as practical -- ideally to the receiver itself so they may move together as a unit. A slender zip-tie will suffice and is easy to cut and replace when needed.
A little hot glue goes a long way. If the wires are correctly tied off you only need a dot of hot glue at the connector for insurance.
A: [Mark J.] The FIRST robotics competitors are fond of the kiwi drive and have written a good bit about them. Lots of vector analysis and trigonometry. You can find one such discussion of kiwi drive control at stackoverflow.com: How to Control a Kiwi Drive Robot. Translating the equations from that discussion to an OpenTX mix gives us this:
The drive ESCs plug into the receiver ports as labeled; receiver port CH4 is available for weapon control. With a standard mode 2 stick layout:
A: Sure. Using the convention from the stackoverflow.com discussion, where a '+' value spins the motor clockwise and a '-' value spins the motor counter-clockwise:
A: Just swap the 'Ail'eron and 'Rud'der assignments in the MIXER screen to flip strafe and rotation sticks.
I'm using the
A: [Mark J.] Since your drive ESC can handle the higher voltage, a simple change to the Elevon mix can limit the drive ESC power output to 3s level. The process follows "Step 1" of the Quick and Dirty set-up with one small change:
Warning DO NOT calibrate the ESCs with the throttle limited to 75%. The recalibrated ESC will interpret 75% throttle as full 4S voltage.
A: [Mark J.] Yes, you can fly with LiPos -- with certain restrictions. Here is the official guidance from the Federal Aviation Administration: PackSafe - Lithium Batteries.
Quick summary:
Do you know how these people can charge their batteries without removing them from the chassis? Thanks! [Redmond, Washington]
A: [Mark J.] A battery formed from multiple cells in series can be charged by simply attaching the main power plug into a suitable charger. This charges the cells in electrical series, and the charger "sees" only the total voltage of the battery, not the voltages of each individual cell. If charged in this manner, the charge state and peak voltage of each cell may depart from optimum over the course of multiple charge cycles. For most battery chemistries this is not a significant problem, but high performance LiPoly batteries can become volatile if this is allowed to go on for too long.
Charging a LiPo battery via the little white balance plug will restore the charge status of each individual cell in the pack to optimal levels -- but this does not need to be done with every charge. Model airplane and drone users often only balance their LiPos every 3rd of 4th charge. If you have big, expensive LiPos that take a lot of abuse in your heavyweight 'bot you may want to take very good care of them and balance on every charge. If you have an understressed $15 LiPo in your antweight, just plug the main power leads into your charger between matches and run a balance plug discharge-recharge cycle when you get back home.
If it's difficult to get to your battery connector to unplug it for charging, FingerTech offers a small charging jack suitable for antweights that can be mounted thru an external panel.
Q: That jack was the thing I saw people using so I will definitely pick one up, but one more question:
Will charging the bot with the jack still irreversibly damage the LiPo over time? The company who makes my battery discontinued the particular MAH/C rating model so I'm not sure I could easily get more of them. I have 4 of them in good condition but would prefer not to lose any.
Thanks!
A: The list of "bad things" that will irreversibly damage a LiPo in a combat robot is quite long. I don't believe that topping off the battery three or four times before restoring the balance of the cells will result in any noticeable decrease in longevity.
I would be far more concerned that battery damage from something higher up on the list of "bad things" would pass un-noticed and that charging the damaged LiPo would abruptly turn it into a small but effective blow torch set loose inside the 'bot.
One thing I noticed at the event was that my driving was a little subpar, I was able to survive but I struggled to stay aggressive, I wasn't comfortable enough with my own robot to be able to confidently get hits, even in fights I was winning. I spent quite a bit of time driving the thing around but was still struggling to control it properly.
My question for you is, do you have any tips for getting more comfortable in driving? Obviously I understand that nothing beats actual time in the box but I would like to know if there is a good way for me to prepare and familiarize myself with my own robot better.
Thanks! [Worcester, Massachusetts]
P.S. -- I've been working on a new custom bot which (if parts come in on time) I'm hoping to have built by around mid December, giving me time to prepare for the NHRL January New Bots event. The thing is essentially a custom Peter Bar kit running brushed drive and 2 ar500 weapon bars.
A: [Mark J.] Welcome back, Team Stamina.
A common answer: "They aren't. Their robots are set up better than yours."
A: The the circuit diagram below shows one method by which the drive motors can be wired to run on 3S and the weapon on 6S.
Note that the two batteries are not equally loaded:
If you were allowed to have both a 6S and a 3S battery in the robot the circuit becomes much cleaner with the 6S powering only the weapon and the 3S powering the drive motors. A single receiver can be used for both power circuits:
In buying the parts, I see in the description of the ESCs that it says,
A: [Mark J.] A typical R/C radio receiver requires power in the 4.5 to 6 volt range, but the Mega Spark motors run on an 11.1 to 14.4 volt battery. A Battery Eliminator Circuit (BEC) takes in the full battery voltage and feeds a regulated 5 volt power line direct to the receiver. This eliminates the need for a separate lower-voltage battery to run the receiver.
If none of your drive or weapon ESCs have a built-in BEC you will need to add a stand-alone BEC to supply power to your receiver. FingerTech sells a BEC suitable for use with their ESCs. The sketch at right shows how the BEC is wired in with brushless ESCs.
A: [Mark J.] Take a look at the "Selecting the Right Li-Poly Battery" section of the Ask Aaron Li-Poly Battery FAQ. You'll do well to read the entire FAQ.
Q: And should we split the allowed voltage for our competition 50/50 between drive and the weapon?
A: Typically, the drive and weapon systems are wired in parallel so that each system receives full battery voltage -- there is no "split". See Frequently Asked Questions #19 for an example wiring diagram.
A: [Mark J.] The Malenki-Nano has an unusual method for entering 'bind mode' and can 'unbind' from your transmitter under some conditions.
To re-bind the Malenki-Nano to your transmitter:
It would even be better if I could program my radio to do it. I currently use a Jumper T16 radio for the robot, but I also have Taranis Qx7 and Futaba 14sg transmitters. [Social Media]
A: [Mark J.] I don't know of any currently produced ESCs that feature an invert mode, but an invert switch is very easy to implement on OpenTX transmitters like your Jumper and Taranis. See the 'Simple Invert Switch' section of my Taranis Transmitter Combat Guide.
Alternately, the FingerTech tinyMixer plugs in between your receiver and ESC and has a third channel plug to provide an invert function. The tinyMixer does allow you to turn off the mixing function to allow you to use transmitter mixing while retaining its invert function.
Thanks!
A: [Mark J.] Your Scorpion Nano is light and small, but according to the manufacturer's website the output from the BEC is both weak and a non-standard voltage:
A: [Mark J.] The transmitter is not bound to a receiver, it is the receiver that is bound to a transmitter. The binding process simply instructs the receiver to respond only to signals from a specific transmitter. Binding does not effect transmitter settings, but may effect receiver failsafe settings.
A receiver can only be bound to one transmitter at a time, but you can have any number of receivers simultaneously bound to the same transmitter. Binding a new receiver to a transmitter does not effect the ability of the transmitter to communicate with the original receiver.
A: [Mark J.] TELL ME ABOUT YOUR ROBOT
A: [Mark J.] Your LiPo battery does not connect to the receiver, Vestal. Your FlySky receiver has an operating range of 4.5 to 6 volts, which is typical.
The red/black two-wire connector from your Zeee LiPo battery connects to the drive motor ESC (and the weapon ESC, if present). You may need to replace the ESC connector if it does not match. A special Battery Eliminator Circuit (BEC) in the ESC reduces the LiPo voltage to 5 volts and sends that power to the receiver thru the ESC's three-wire cable. I gave you the wiring diagram below in response to one of your earlier questions.
The LiPo white 4-wire battery balance connector is not used for power output -- it is used only for battery charging. I'm not entirely sure what you plugged into what, but smoke from the receiver is a very bad sign. I suspect the receiver is toast.
A: [Mark J.] It's not difficult:
A: [Mark J.] The FS-iA6B receiver typically included with the FlySky FS-i6 transmitter uses standard three-wire servo connectors, as shown in the pic. The wire colors may vary.
...but there are other FS-i6 compatible receivers, and some have different connectors or require direct soldering of the output wires.
A: [Mark J.] Builders have moved away from mechanical solenoids toward solid state controls that are less likely to fail from high physical shock loading. That said, mechanical solenoids can last indefinately if:
When a solenoid fails in a combat robot it is typically from a single 'out-of-spec' event rather than from cumulative damage or wear. There is no need to replace a high-quality solenoid for each event, but do carry a spare in your parts box.
A: [Mark J.] Team Run Amok has always used Futaba R/C systems. For reasons both practical and sentimental we still use the transmitter purchased for our assault on Robot Wars in 2001 -- the venerable Futaba T6XAs. I've patched in a 2.4 GHz conversion module to keep it legal and compatible with modern receivers.
Futabas are expensive, but you get value for your money: silky smooth control sticks, comfortable ergonomics, intuitive set-up, and a really well written manual. After more than two decades my T6XAs still performs flawlessly.
A: [Mark J.] The Turnigy Evolution Pro is designed for control of multi-rotor drones. Drones use on-board 'flight controller' hardware to blend their complex multi-motor mixing and gyro inputs, so they have no use for the simple two-channel transmitter mixes that winged aircraft (and combat robots) use. Thus it is not surprising to discover that the Evo transmitter has no channel mixing -- most drone transmitters do not.
If you want single-stick mixing for your robot you'll need to use a dual-channel ESC with built-in mixing or add a mixing module between the receiver and motor controllers.
Don't Assume that any random R/C radio system will meet your combat needs. The Team Run Amok: Radio Selection Guide recommends that you download the user manual for any radio you're considering. If the manual doesn't make sense or you can't find the full checklist of features your robot needs, move on to another radio.
A: [Mark J.] I can write at considerable length on this topic. Let me stick to the basics:
The layout of a pistol grip transmitter is entirely focused on control of a vehicle that requires only two input axis: throttle and steering.
The layout of a twin-stick transmitter is designed for control of a model aircraft that requires four inputs; throttle, roll, pitch, and yaw. These four axis of control may all be controlled using only the thumbs of the left and right hands. The standard combat robot control layout places forward/reverse and rotation control on one joystick, leaving one hand and one joystick free for other controls and adjustmnts:
Combat robot control adjustments all have analogous aircraft functions found on standard twin-stick option menus:
Oh, and there's a little quirk about pistol grip transmitters that may limit your choice of speed controllers should you decide to go that route: Using Pistol Grip Transmitters with Robot Speed Controllers.
A: [Mark J.] Using the stick trim to correct unequal motor start-up does not always work. On FlySky transmitters it only works if you have reversed the response on CH1 xor CH2 to get the channel mixing response to work correctly.
Rather than try to explain why this is true, my radio guides recommend use of the Subtrim function to equalize drive motor start-up response. Subtrim lets you adjust the center positions of individual receiver outputs and will correct the problem on all transmitter brands regardless of any channel reversing that has been made.
Here's a walk-thru solution to unequal motor startup on the FlySky FS-i6 from my Transmitter Tweeks for Better Driving Control Guide:
FS-i6 Subtrim Adjustment:
A: [Mark J.] Black, brown, and red wires are not standard -- is that a typo? The KSTs I've seen have yellow, brown, and red wires:
A: [Mark J.] The value to enter for 'Operating Voltage' is the voltage the battery will supply to the motors under operating conditions. When placed under load by supplying significant current, the battery's resting voltage will almost instantly sag down toward the rated voltage. Since we are interested in conditions when the motors are operating and thru all phases of a several-minute match, I recommend that you use the rated voltage of the battery -- 11.1 volts in this case.
A: [Mark J.] An effective combat robot must have balance between all of its systems.
If you're interested in using the full capability of your computerized transmitter or need suggestions on which radio system to buy in the first place, Team Run Amok has several guides on the subject.
A: [Mark J.] Some transmitters can do this, some transmitters cannot. What transmitter do you have?
Q: At the moment I'm using Flysky FS-i6 but I'm going to switch to Taranis X-Lite.
A: Bad News - The FlySky is a great inexpensive radio, but the stock firmware can't assign custom functions to a switch. You're out of luck there.
Good News - The Taranis X-Lite uses OpenTX firmware and an invert switch is very simple to implement. See: OpenTX: Simple Invert Switch.
A: [Mark J.] The symptoms fit a dirty or faulty potentiometer on the transmitter throttle stick. Plug one of your drive motor ESCs into the receiver weapon port and see it the drive motor behaves the same way as weapon. If it does you can try to clean the pot [Cleaning a DX6i Potentiometer] or for about $15 you can buy a whole new gimbal and pop it right in.
A: [Mark J.] A few months ago I got tired of answering 'what's wrong with my transmitter mix' questions and decided to answer all possible mix problems at once. I wrote an 'expert system' program [a primative and specialized A.I.] that asks three questions about what your bot is doing and spits out a precise and direct solution. I call it the Run Amok Mixer Fixer.
From your description, the answers to the three questions the Mixer Fixer chooses to ask are:
I have turned on the "mixing" on my transmitter and the motors are working in the correct direction when I move my stick on the transmitter. My problem is that my left motor engages and starts running some time before my right one kicks in - if I move my stick up by 10%, only my left motor has started to run, but my right motor is stationary. It's only when I move my stick up to 20% that my right motor starts moving. I have searched quite for some time on the net on how to calibrate the "mixing", but I can't seem to find anything.
I have tried adjusting trims and mix offsets but nothing is helping. What can I do? [Social Media]
A: [Mark J.] From my FlySky Combat Robot Programming Guide:
To set subtrims: prop the drive wheels off the ground and push the throttle forward slowly 'til one motor just starts to turn. Select the receiver channel the other motor is plugged into and slowly increase the 'Subtrim' setting 'til both motors turn.
A: [Mark J.] Wire the BEC in between the battery power buss and the receiver -- just like the ESCs. You may plug it into any available port on the receiver.
A: [Mark J.] FingerTech Robotics sells a lot of those radios with their combat robot kits. They sell a Turnigy 3S Transmitter Lipoly Pack that fits perfectly into the 8xAA battery compartment of the HK-T6A and will last multiple events before needing a recharge. A matching female connector to solder into your transmitter is included.
A: [Mark J.] The FlySky FS-CT6b is a primitive transmitter that requires connection to a PC to adjust most control functions. It's awkward and outdated but it does have the ability to adjust steering sensitivity.
Q: Why does FingerTech use this awkward transmitter with their robot kits? The full-featured FlySky FS-i6 costs about the same.
A: From a manufacturer's standpoint the FS-CT6b makes sense. FingerTech can load their standard transmitter set-up file on a large batch of transmitters in very little time: turn transmitter on, plug in the cable, press upload, next. For the FS-i6 they would need to wade thru the transmitter menu and manually enter a FS-i6 combat set-up. That takes much more time and involves possible entry errors. Most Viper kit owners just make do with that stock set-up and never change anything.
There is an on/off switch harness that the last user did not use. He says that he found a way to do whatever it was doing with the transmitter he used. The on/off switch has only two wires, not 3-pin so I guess it does not plug into the 3-pin connector on an ESC. Seller mentioned where it went in quick discussion but my brain did not record it so now I'm lost on where to put it.
The only place I see a possible two-wire connection is the Brake/Coast jumper. Is this where it goes to turn the ESC off? [Franklin, Ohio]
A: [Mark J.] There is no place to wire an on/off switch on the Victor 883 ESC itself. The brake/coast jumper controls how quickly your motors come to a stop when the ESC gets a stop command from the radio -- keep it on 'brake'. Power is controlled by adding a switch to the positive input wire from the battery (see diagram). You will need a high capacity switch or removable link capable of handling the full current demands of the motors -- which may be substantial.
A: The device labled 'Removable Power Link' in the diagram is the master switch. In large robots this switch is usually a 'removable link' for safety purposes. A removable link is just a two-pole connector with one side shorted by a loop of wire -- pull the connector apart and the circuit is broken.
Smaller class robots can use a simple single pole single throw (SPST) switch of suitable capacity, or you can make a removable link out of a small two-pole connector.
Q: A follow up question on the Bargain Bot. The bot has two 24v motors each attached to their own 24v Victor 883 motor controller. Seller of the bot said I just needed to hook up an RC Receiver and matching/bound transmitter and it would be good to go. Well I've bought two transmitter/receiver sets now.... just tried the second one. Same issue with both (beside poorly translated Chinese manuals): 883's flash that no PWM signal is found. I have hooked each 883 to different channels on receivers and turned on the transmitter before powering up the bot: no change. I reversed the cable with signal wire on different pin: no change. The ESCs always flash orange indicating no PWM signal.
Am I missing a part? Do I need to power the receiver separately? I was thinking it got power from a regulated voltage circuit built into the 883, but could be wrong on that.
A: Some ESCs have a built-in voltage regulator called a Battery Eliminator Circuit (BEC) to power the receiver. The Victor 883s do not have a built-in BEC so you do need to power the receiver separately. If your robot is as old as I think it is the builder may have used a separate receiver battery pack for this purpose. I would suggest adding a 'stand alone' BEC to power the receiver: something like this.
The diagram below shows how a stand-alone BEC is wired in parallel to a generic motor controller. You may plug the BEC output into any unused port on the receiver. You want and need only one BEC for your system.
Q: Do I need a converter of some sort from RC type control signals to PWM signals of these larger motor controllers in bots??
A: The Victor ESCs were originally designed to work with a special control system that had a higher voltage magnitude Pulse Width Modulation (PWM) signal than typically comes from an R/C receiver. For best signal reliability they require an IFI PWM Signal Driver to boost signal voltage. I see from a photo included with your question that signal drivers are already installed on your receiver cables. Keep them in place and you'll be fine.
Q: The BEC you linked to says it is a "Brushless Receiver Servo Power Supply". I think my motors are brushed so should I get a brushed version?
A: You do have brushed motors (they look like Bosch GPA 750s) but there is no difference in BECs for brushed and brushless applications. The BEC just provides 5 volts to the receiver power buss. I suspect that the BEC manufacturer added 'brushless' to the description in hopes of getting a few extra search hits.
Q: I see BECs in 5 volt, 6 volt, and adjustable voltages. Are receivers 5 volts these days?
A: Acceptable receiver voltage ranges vary with manufacturer, but I know of no receivers that cannot handle 4.8 to 6.0 volts. The 6 volt BECs may be preferred by R/C aircraft builders to get a little more speed from their control surface servos. For your purpose either 5 or 6 volts will be just fine.
A: [Mark J.] The combat robot community is most certainly awesome and giving, but it's sometimes difficult to seperate the factual from the apocryphal. Pick your sources carefully. Yes Reddit, I'm looking at you.
Combat robots come in all sizes and are constructed from a wide selection of materials and components. Fortunately the common materials require no special storage conditions. Storage at room temperature and humidity is just fine, with a few precautions:
As a beginner, do you think the added features of the X9D+ are worth the headache of upgrading, given that I currently have a functional transmitter/receiver pair? Is there an obvious choice of receiver that I'm overlooking? Any input would be greatly appreciated! [Biddeford, Maine]
A: [Mark J.] Many people were kind enough to assist me when I started out in combat robotics. I appreciate the opportunity to pass on that help. Thoughtful newcomers are always welcomed here at Ask Aaron.
You have two radio systems out at the extreme ends of the performance spectrum, and I'm not fond of either for most combat robot applications.
Take a look at my Combat Guide for the Taranis Q X7 Transmitter. The Q X7 runs a slightly different version of the OpenTX firmware, but the process of creating functions is the same. The guide should help you decide if you are willing to take on the process required to set up these transmitters. I consider OpenTX radios to be massive overkill for most combat robot users.
About SBUS ReceiversCombat robot components in general do not play well with SBUS output so, unless you construct your 'bot around a drone flight controller module, an SBUS-only receiver like the FrSky XM+ drone receiver is right out. If you're going to stick with your Taranis ACCESS protocol transmitter you'll want a receiver with PWM outputs: perhaps the Archer R4 or R6.
Seems like the kind of thing that could be solved with a firmware hack? Or do I just buy my way out? [Reddit]
A: [Mark J.] You're asking a lot from a very inexpensive R/C transmitter. A Mecanum drive transmitter mix requires four custom mixes each involving three channel inputs. The FS-i6x has only three custom mixes and each can have only a single input. No firmware hack is going to help.
You could buy an on-board Mecanum mixing module for your 'bot from Robologic or a few other suppliers. They run $50 or $60. I would recommend puting that money toward a more capable transmitter.
It is very simple to program a Mecanum mix on an OpenTX transmitter like the Taranis Q X7: Mecanum wheel omni-drive mix in OpenTX.
A: [Mark J.] It's not good design practice to start with a battery and select a robot design based on the restrictions imposed by that battery. That's like picking a restaurant before you know what type of food you want; you may end up eating a burger at a Chinese cafe.
Now, you CAN simply select a 3-cell Lithium Polymer battery with 850 mAh capacity and a 35C discharge rate. Such a battery is almost certainly adequate for a first-time beetleweight build, but is likely bulkier and heavier than required. Decide on a design and suitable components for your robot, then we can select a battery correctly sized to your task.
A: [Mark J.] FingerTech Viper manual, page 5:
Try starting your 'bot with the transmitter already on and write back if this does not solve your problem.
A: [Mark J.] The diagrammed circuit will work just fine... until the link is removed. With the link gone the higher-voltage 6S battery will back-drive current thru the 4S battery to find a new path to ground:
This will result in reverse current thru the drive ESC and forward current applied to the weapon ESC. Reverse current applied to the ESC will typically destroy the device, and back-driving a LiPo battery can be destructive as well. If you really want to run two batteries at different voltages you will need two power links.
A: [Mark J.] The FS-BS6 receiver is designed to pair with the FlySky FS-GT5 transmitter -- your FS-i6x is not equipped to adjust or turn off the receiver's internal gyro. However... the receiver gyro only affects the output on receiver port CH1. If you leave your Elevon drive mix as it is and mirror CH1 to another port (CH3, CH4...) you can plug the ESC lead that was in CH1 into the mirrored port and eliminate all gyro influence.
To mirror CH1 to the CH4 port: Go to the MIX page in the FUNCTIONS menu on your FS-i6x transmitter and set up Mix #1 like this:
Press and hold the 'CANCEL' key to save, then move your ESC plug from the CH1 port to the CH4 port and you'll have no gyro action. For help in navigating the FlySky menus see: Programming the FlySky FS-i6 Transmitter for Combat Robotics.
A: [Mark J.] The Melenki-Nano has on-board mixing; don't complicate things by turning on transmitter mixing as well.
Running these symptoms thru the Run Amok Mixer Fixer gives this result:
A: [Mark J.] The Taranis Q-X7 uses OpenTX 2.2 firmware that is a remarkably flexible, but the user interface is very different from standard transmitters. I just finished a full revision of the Team Run Amok "Programming the Taranis Q X7 Transmitter for Combat Robotics" guide. It has complete walk-thrus for:
A: [Mark J.] The part you're pointing to in your picture is the R/C radio receiver. The two 3-wire connectors are correctly positioned and appear to be well inserted. These connectors are quite reliable and seldom if ever give trouble. You should remove the plugs and verify that the metal pins in the receiver are straight and engage correctly when the plugs are re-inserted -- but I think your connection problem is elsewhere.
Pulling on one wire will move other wires within the system and make it difficult to trace the source of the trouble. I notice in the large photo you provided that you are using large yellow 'Wire Nuts' to connect the power leads instead of the 'Mini Terminal Blocks' that come with the kit. The small gauge wires used in the Viper kit will not make a reliable connection in a connector made for lager gauge wires -- I believe that is where your problem resides.
Those terminal blocks cost more than wire nuts and are included in the kit for good reason. Find them, use them, and your problem will disappear.
A: [Mark J.] That's a common problem with a simple fix:
A: [Mark J.] I'm working thru a longer response, but a problem of this type is difficult to diagnose from a distance. With hands-on I'm sure the problem could be found and fixed in five minutes. I wanted to quicky post this reply to ease your anxiety.
First: From the photo, it looks as though the wheels may be rubbing hard against the chassis. Loosten them and move them a bit out on the axle to get some clearance between tire and robot. Try that first!
Assuming that is not the problem:
I note that you have abandoned the 'Mini Terminal Blocks' that come with the kit and now have power wires taped together with blue masking tape. That is not a reliable connection method. While that may or may not be the cause of your non-responsive motor it will cause trouble at some point. I STRONGLY suggest that you use the terminal blocks.
Reply: Thank you for your response. It was exactly what we needed to hear. We're going tomorrow with our almost working bot! Thanks again.
A: [Mark J.] The Hamburger is Bad. There are a good dozen reasons why the wheels might be spinning by themselves; I need much more information before I can offer a useful opinion.
A: [Mark J.] A bit of the history of R/C systems will be helpful:
It's a small annoyance, but is there some transmitter adjustment I can make to equilize the turning like I did the forward motion?
A: [Mark J.] Yes we can correct that. Your problem is that you've used the subtrims to align the signals you're sending to your drive motors, but those signals are not well centered in the 'deadband' of the motor controllers. When the signals move in opposite directions to turn the robot, one signal leaves the deadband before the other and that motor starts to turn too early.
You can center the signals by moving both ESC channel subtrims one step 'forward' and testing turning response.
A: [Mark J.] Adjustments to the 'End Point' and 'Dual Rate' functions can give you small increases in maximum servo rotation, but for significant increases there are other solutions.
Check to assure that the servo does not bind and stall at the end of travel in either direction. You may adjust the 'Pos. mix' and/or 'Neg. mix' settings downward to prevent binding if needed -- the 'Pos' setting effects travel in one direction from center and 'Neg' effects the other direction.
1) If I push the drive fully forward my bot is real zippy fast and I have a little trouble controlling it. Great for rushing, not so great for turning. But if I only push the drive a little forward in an attempt to slow down, one side starts driving before the other and I turn instead of going forward. So I need to either go faster than I'd like, or start by turning away from a straight line.
2) My other problem is that I turn SO FAST. All 4 motors are spinning to turn me around and it's very easy to spin out, especially with my plastic wheels on a smooth floor.
I would like to get my motors synced up better and slow down the turn rate, but I'm not sure where to start and I only figured out my current mix through trial and error. Any ideas?
A: [Mark J.] I'm not sure why you decided to create custom mixes when you could just turn on the built-in FS-i6 Elevon mix but since you went to all the trouble to figure it out we'll just leave it alone and fix your other issues. Both of your problems are common and have fairly easy solutions.
It's not uncommon for one of the motor controllers to 'kick in' and start motor motion on one side of the robot just a bit sooner than the other side. One side starting a bit early will point the 'bot off at an angle and require delicate correction to re-aim under acceleration. To eliminate the problem completely you can use the 'subtrim' function to set forward motion start points equal.
To set subtrim: prop the drive wheels off the ground and push the throttle forward slowly 'til motors on one side just start to turn. Select the receiver channel controlling motors on the side not yet turning (usually: left is Ch1, right is Ch2) and slowly increase the 'Subtrim' setting 'til those motors turn at the same slow rate.
It can be difficult to maintain the delicate touch needed to correct path deviations in combat, and having the robot respond to a small stick input with a large turning motion makes it much more difficult. An intended small correction becomes way too much and you zigzag ineffectively across the arena.
A: [Mark J.] Balance connectors for battery packs with cells in parallel groups treat each group as a single cell. Your 5S2P pack will wire the balance connector like this:
A: [Mark J.] It's easy to set up a channel 3 safety switch on a FS-i6 transmitter by activating 'Throttle Hold' in the function menu:
More setup tricks are in my FlySky FS-i6 Combat Guide.
I bought a 2s LiPo charger from the BBB shop and when I attempt to charge any of my Turnigy 300mah LiPo batteries, the light is red for about for seconds, then flashes briefly and repeats this. I have plugged these batteries into my robot, but it's not turning on?
Thanks for your help! [Eton, England]
A: [Mark J.] This same charger is sold on Amazon.com as the Blomiky H102. Several reviews of the Blomiky report problems similar to what you describe. The miracle is that most of these little £3 ($5) chargers actually do kinda work. Yours doesn't. Send it back to the Bristol Bot Builders shop and ask for a new one.
Note: The Blomiky advert on Amazon estimates that the H102 will take about 5 hours to charge a 1000 mAh battery -- that's about 90 minutes to charge your 300 mAh pack. You might want to consider spending a bit more for a faster charger.
Q: About my recent question concerning chargers, I do have a fingertech, proper lipo charger, which came with the fingertech viper kit, but I don't know how to use it, and also my £3 BBB charged batteries much faster than 90 minutes when it worked. If my fingertech charger isn't suitable either, could you link me with a decent, working one with correct accessories and a video on how to use it?
Many thanks again!
A: You have options:
A: [Mark J.] It would help a great deal to know a bit about your robot and more details as to how it behaves when hit. You're asking the equivalent of, "Why won't my car start on a cold morning?" The Hamburger is Bad.
A: [Mark J.] It's been a few years since I wrote the Beginners Guide to Combat Robot Gyros and your question gives me a good excuse to update the page. I've re-written the "Gyro Types" section to better discuss the merits of 'heading hold' versus 'rate' gyros in the modern era of powerful spinner weapons.
Particularly with lighter weight classes, a good weapon hit can send a 'bot spinning so violently that a 'heading hold' gyro can lose its directional lock and behave erratically. Many builders have switched to 'rate' gyros that do not try to keep a heading lock because they are less susceptible to this type of confusion. You lose some of the 'on rails' feel a heading hold gyro provides, but your 'bot won't go crazy if it takes a good hit.
What you're looking for is a single servo gyro with a remote gain control. These used to be fairly common, but with R/C aircraft moving toward integrated 'flight controllers' they are now hard to find.
A: [Mark J.] I get a fair number of questions about fixing R/C mixes. In the past I referred such questions to a multi-step process to diagnose and correct the mix. It worked, but it took a while and the diagnosis sometimes had you changing things and then changing them back. Inefficient.
I recently finished an online javascript 'expert system' to handle this type of question. The Run Amok Mixer Fixer asks just three questions about your mix and then tells you exactly how to fix it -- no trail and error! Give it a try.
Any idea how I can make a BEC-disabled Scorpion work? [Social Media]
A: [Mark J.] Cuting the BEC jumper on your Scorpion ESC does not allow full battery voltage to flow to the receiver -- it removes ALL power output from the ESC via the three-wire receiver cables. Your receiver is no longer getting any power at all.
You have two options to supply full battery voltage to the servo:
Thank you for the help. [Direct Email]
A: [Mark J.] Dual-stick tank steering is not a popular option, but it is easy to set up the radio for this style of control.
If you are using the BotKits-recommended 'Scorpion Mini' dual motor controller or another dual motor controller with "on-board mixing" you will first need to turn that off. For the Scorpion controller this is done by removing the "MIX" jumper on the circuit board. Two jumpers are located next to the calibration button: LIPO and MIX. Remove the MIX jumper by pulling it upward away from the board. Consult the user manual for other dual motor controllers.
A: [Mark J.] The terminology can be confusing, but the purposes are easy to understand:
A: [Mark J.] You probably have a dozen lithium ion batteries in your home: laptops, tablets, phones, drills, and 'bots. They all have the same base chemistry. You hear about lithium ion batteries in polymer cases (LiPos) blowing up because they suffer from much greater abuse in hobby service. Promptly dispose of any damaged, swollen, or 'puffy' LiPos.
Spontaneous ignition of properly stored LiPos is quite rare. The smoke from a LiPo fire is toxic and should be avoided, but the quantity produced by a couple insect-sized batteries 'going off' in your home is much more "bad smog day in SoCal" than "kill your family in their sleep".
See also: Lithium Polymer Battery FAQ
A: [Mark J.] There isn't a simple answer to that question that would not be misleading. A typical heavyweight combat robot will wire together - in a series-parallel assembly - multiple packs made up of dozens of individual 3.7 volt lithium cells in order to provide the voltage and current capacity needed for the specific drive in use. A separate assembly may be required to operate a weapon motor at a higher voltage than the drive system. So:
A: [Mark J.] 'SMEE…' comes in a variety of sizes, including the purchasable 3-pound Smeetleweight RTR. They all share the same simple drive system wiring.
Two receivers - one in each 'pod', are both bound to a single transmitter. Although the motor control channels could be 'mixed' for single-stick R/C control, it may be best to apply a true 'tank steer' control system with the right motor assigned to CH2 (elevator) and the left motor assigned to CH3 (throttle).
Thank you very Much!
However - I don't believe that the dual-pod 'SMEEEEEEE' design translates well to a UK Antweight that has to fit into a four-inch cube.
If you want to use the general design, save weight and run a single receiver and battery with a long receiver wire over to the far ESC/motor combo.
A: Rules vary by event. I've previously suggested that you contact the organizers of events you plan to enter for specific guidance on robot construction. To the best of my knowledge the answer is:
A: [Mark J.] You have not provided enough information to calculate the requested answer. The hamburger is bad. See: Example Drivetrain Analysis using the Tentacle Torque Calculator for the information and process required to define motor loading and calculate the battery requirement.
A few hours later...
Q: Sir I want to select a battery for Robowar in I am using 2 propdrive 50-60 motor each on 200amp on 22.2v for weapon and 2 R997 motor on 60amp each on 22.2v for drive motor for 66 lbs category and total total time should be active is 6 minutes please answer my question sir [India, via a proxy server in Oregon this time]
A: Didn't bother to read the link I provided, did you? A quick summary: current drawn by electric motors is proportional to the loading placed on them. You have information about your motors, but you need to know the wheel size, drive gear reduction, and physical details about your weapon in order to estimate motor loading.
Ask Aaron is not a free engineering service. We provide tools and information needed to solve your robot design and construction calculations, but we won't do your homework for you. Since you aren't willing to use the tools or instructions provided by Ask Aaron, you might learn something by watching Robert Cowan go thru his process of estimating battery capacity requirements for a robot with a large spinner weapon:
A: [Mark J.] I think you're fine, Anacortes. The calibration instructions read:
Is this configuration normal, or did I wire something backwards? I tried reversing CH1 and CH2 with the programming cable, but that flipped left and right too.
A: [Mark J.] When you buy a T6A transmitter from from FingerTech as part of a Viper kit it comes pre-programmed with a single-stick mixer control. However, variation in kit assembly can put things awry. Two steps will set your mix right:
What I'm trying to do is just to connect one motor and ESC to my receiver, and to run that one motor. I'm using a Vex Motor Controller 29, and I made the alterations to it like it says in Jameson Go's blog post. I'm running this to a Servocity 730rpm planetary gear motor. The battery is a 4s 850 mAh Turnigy LiPo. [Photo at right]
So what I have is the two wires coming off the ESC onto the motor, those are all good. Then on the other end of the ESC, I have the white signal wire and the a black ground wire going to my receiver, as well as an orange positive current wire and another black ground wire going to the battery, but when I plug them in, nothing happens.
Is there something I'm missing in the wiring system, or must it be an issue with my soldering or something else I've done? Any help much appreciated.
A: [Mark J.] You appear to have correctly modified the VEX 29 ESC for high voltage operation. You have also properly connected the ESC to the battery, motor, and receiver. Unfortunately you're missing a vital component.
A: [Mark J.] The conversion kit from Banggood is about $6, and the complete stick assembly is about $10.
A: [Mark J.] Any R/C transmitter can send a signal to multiple receivers -- only one radio frequency is used and the signal received by each receiver is identical. Here's how it works:
So, each receiver has access to all of the transmitter control signals, but each 'pod' only makes use of the Servo Control Signals that apply to components in that pod. It's not uncommon for a large combat robot to make use of multiple receivers. It helps avoid long signal wire runs and offers some redundancy in case of unusual situations, such as you describe.
A: [Mark J.] Those joysticks were part of the IFI Robot Controller System, as originally developed for the F.I.R.S.T. Robotics competitions in the late 1990s. Battlebots encouraged teams to use these 900 MHz controllers because they were less susceptible to interference than the 75 MHz hobby radios available at the time. The IFI system was bulky, complex, expensive, and had very limited control options. They were made obsolete by the frequency-hopping 2.4 ghz radios now in use.
A: [Mark J.] Assuming that you want weapon control on Channel 3, the white 'signal' wire solders in the hole right under Th -- which stands for Th rottle not 'Three'. The black 'ground' wire isn't needed, but you can solder it in the round hole under GND if you like.
Why do I assume you want to use CH3? You didn't tell me about your transmitter or your weapon, but on a US standard twin-stick transmitter the Th rottle is assigned to the 'ratcheted' vertical axis on the left stick. That axis is not spring-centered, so you can set your weapon speed and leave the stick alone. The other channels are possibly less convenient:
A: [Mark J.] See Frequently Asked Question #19 for a description of basic combat robot wiring. The battery is wired to the ESC. Most ESCs have a Battery Eliminator Circuit (BEC) that will reduce the battery voltage to a safe level and supply power to the receiver via the 3-wire cable(s) that connect it to the ESC.
There are specialty ESCs made for antweight and fairyweight robots that plug only into the receiver and require the receiver to be connected direct to the battery. See this archived post for their wiring diagram and limitations on their use.
A: [Mark J.] The DX6e is not popular in robot combat. The programming menu system (non-standard and unique to Spektrum) is designed to configure complex control options for a wide range of aircraft types, but finding and setting the functions needed for a combat robot can be confusing.
I've written combat programming guides for Futaba, FlySky, and Tarranis transmitters but I have no complete guide for Spektrum. Although you haven't told me anything about your robot, your control preferences, or your 4-channel receiver, I think I can walk you thru a basic set-up.
Mixing I'll assume your transmitter is set with US-Standard 'Mode 2' stick assignments with channels 1 and 2 controlled by the right stick. Plug the left ESC into receiver CH1 (elevator) and the right ESC into CH2 (aileron). Follow this step-by-step video that sets up an 'elevon' mix for an airplane -- the same mix will put robot throttle and steering control on the right control stick. If a 'forward' command from the transmitter results in one motor forward and the other motor backing up, look up the 'Reverse' function in the Spektrum manual (page 26 in my copy of the manual) and reverse the motor channel that is responding incorrectly. More troubleshooting help.
Weapon Control I'll guess that you have a 'spinner' weapon. Your drive mix uses channels 1 and 2 on the receiver, so your simplest option is to plug the weapon ESC into receiver CH3 ('throttle' left stick vertical) or CH4 ('rudder' left stick horizontal). If you would prefer assigning weapon operation to one of the transmitter switches it's relatively simple to do:
NOTE - Earlier Spektrum transmitters (DX6, DX6i...) had a problem with their mixing that did not send full throttle commands even with the stick at full travel. If your DX6e has this problem, see the special instructions in this archived post.
For my next robot I'm thinking about using a Flysky FS2A with a stated supply voltage range is 3.3v to 10v, but I want to run it on 14.8v. Is that gonna work, or am I gonna smoke the receiver? Thanks! [Anonymous]
A: [Mark J.] In most combat robots the receiver is not directly connected to the battery; the battery pack connects only to the Electronic Speed Controllers (ESCs). Most robot ESCs and some aircraft ESCs have a 'Battery Eliminator Circuit' (BEC) that sends a nice, steady 5 volts out to the receiver via the 3-wire receiver leads, while passing the full pack voltage to the motors on demand. I suspect that is how your robot is wired.
That 5 volt power feed falls within the 'supply voltage' requirement of all hobby-grade receivers, and that is the voltage your receiver will 'see' as long as your main battery voltage remains in the range accepted by your ESC.
If none of your ESCs have a built-in BEC you can purchase a 'stand alone' BEC that connects to your battery and plugs into your receiver to provide that same steady 5 volts. Search for 'BEC' in this archive for more information on battery eliminator circuits.
A: [Mark J.] The Factory Menu is the only method I know for toggling the 'safe start' parameters to allow startup with the throttle centered/down. If you cannot now access the factory menu, reset all of your gimbal trims to zero and try again.
If you are still unable to access the factory menu you can do a Factory reset from the System menu. This will wipe all changes and model settings and return the transmitter to the 'new from box' settings.
I've got a problem trying to do something not covered in your guide that I thought you might help with. In addition to my combat robots (two ants and a beetle) I'd like to use the transmitter for an 1/12th scale R/C race car I've had for years. I have a very simple radio set-up to control the single-motor ESC (on channel 3) and the steering servo (channel 2). When I power everything on the steering servo is correctly centered and responsive, but the drive motor immediately powers up and runs at medium speed. I have to pull the throttle down about half way below center to get it to stop.
Is there something wrong with the ESC or is there some adjustment needed to the transmitter? [Pensacola, Florida]
A: [Mark J.] Glad to hear that the Taranis Q-X7 Combat Guide helped with your 'bots, Pensacola.
Robot ESCs and R/C car ESCs have different expectations in the 'center position' signals they get from the receiver.
Combat robot drivers who wish to use a pistol grip transmitter with their robot ESCs have a similar problem, but with a different solution. Team Run Amok has a page with details and instructions:
Assuming that you want a standard single-stick drive on the right stick with the added side-strafe control on the left 'rudder' axis, your channel layout and MIXER page are shown in the pictures above.
Real omni-drive jockeys may prefer putting strafe on the right stick and rotation on the left. Just swap the 'Ail'eron and 'Rud'der assignments in the MIXER screen to give that a try.
What am I missing? The wiring is the same as I had working on my last transmitter and I'm pretty sure I had just reversed one of the channels. Thanks! [Boulder, Colorado]
A: [Mark J.] The odd responses to stick input that you describe are expected if you have both transmitter 'elevon' mixing and Endbots DESC on-board mixing turned on. The transmitter mixing is much more configurable, so leave it on and turn off the Endbots mixing.
The Endbots DESC has an absurd an unusual method of selecting on-board mixing: it toggles on/off each time you calibrate the DESC. Recalibrating your DESC will turn off the on-board mixing and should fix your problem.
Reply: Desc mixing did the trick, thanks!
A: [Mark J.] I'm not so sure that all of those functions are simple, or even possible on your old HobbyKing transmitter - but they are certainly functions that the Q-X7 can handle. There is very little that an OpenTX transmitter cannot be set-up to do, but all that capability comes with a large and complex system of menus and adjustments. Figuring out how to implement even simple functions can be a challenge. But don't worry, I've got you covered:
I've answered a wide range of individual questions about using the Taranis Q-X7 transmitter for combat robots. The OpenTX firmware used in the Q-X7 offers features previously unheard of in a transmitter priced below $100, but the user interface is radically different and intimidating for even experienced radio users.
I decided to author a combat robot guide for the Q-X7 based on the format of my FlySky FS-i6 transmitter combat guide, but exploring the OpenTX firmware with step-by-step examples setting up functions commonly found in combat robots. Work through these examples and you'll have a good working knowledge of the OpenTX firmware.
A: [Mark J.] You're wise to worry. If you tap the balance plug incorrectly you will have the receiver 'ground' at a different voltage potential than the drive 'ground' and bad things will happen: wires melting, LiPo cells exploding, the works.
When tapping the balance plug for a voltage less than the full battery voltage, always use the full-pack ground (pin 1) on the plug. You could, for example, get 7.4 volts from the balance plug by tapping pin 2 and pin 4, but failing to include pin 1 creates the dreaded ground loop that shorts out one or more cells thru the receiver ground bus.
Make sure everything uses the same ground and you'll be fine.
A: [Mark J.] Call me crazy, but have you considered a 36v lithium charger? Lithium batteries need 'smart' chargers that carefully monitor the charging process. Hoverboards and scooters have on-board charger electronics and just need a power supply, but you'll need a complete charger. Do not use any charger not intended to charge the specific type of lithium battery you're using. Improper charging can very easily result in a fiery and explosive failure of the battery.
Note The battery you reference does not have the high discharge rate commonly needed in a combat robot. A typical combat 4400 mAh LiPo battery would have a max continuous discharge rate of more than 250 amps, while the battery you reference has a discharge rate of only 30 amps. If you can live with that low discharge rate, shop around a bit; I've seen that same battery from other sources for half that price.
If you're interested in the technical details of lithium ion battery charging, check this article at Battery University.
While watching the electronics during the incident, they all seem to shut down for a quarter of a second before coming back on and re calibrating. On my previous robot with a drum spinner, I also had this issue with a 750kv motor. During the competition I was able to wait for the electronics to come back online and drive away. If you need any other information about the electronics or the robot, just tell me. [Arlington, Virginia]
A: [Mark J.] The clue to the cause of the problem is that your installation of a 'large capacitor' across the battery leads helped. You're getting a serious voltage drop when the weapon motor is pulling a lot of power and your electronics are 'browning out'. Two possible solutions -- I'd do both:
A: [Mark J.] Many combat robots use a single-axis 'heading hold' gyro to improve straight-line tracking and provide steady turn response. The solid-state gyro accomplishes this by adjusting drive motor speeds to make the actual turn rate (yaw) matches the turn commands coming from the R/C transmitter.
Zach has expanded on this by repurposing a multirotor flight controller with three solid-state gyros aligned at right angles to each other to detect rotation in any of the three axis of motion: pitch, roll, and yaw. Unlike an aircraft, a combat robot has no direct control over motion in the pitch and roll axes -- but information about movement on those axes can be used to modify robot motion in a way that may keep it out of trouble:
A: [Mark J.] I've re-drawn your sketch for clarity.
A: [Mark J.] The FS2A receiver WILL failsafe correctly with your FSi6x, but the set-up process is not well described in the receiver documentation. Chinese radio gear is like that. Here's what the docs say:
[Turn on the transmitter and receiver]
[Move the transmitter sticks and switches to the failsafe positions and hold them there for the next step]
[Hold down the receiver bind button 'til the LED flashes, then stays steady]
[You're done]
Thanks, James [Smithton, Scotland]
A: [Mark J.] Hi James. I don't have an Endbots DESC lemon here in the shop, but I believe that it is just a Endbots DESC board with modified RX input pin locations that allow a Lemon-RX to be flipped over and soldered to the back of the board. De-soldering the Lemon-RX should allow you to wire any receiver onto the exposed channel pins. I would suggest writing to Endbots to verify this; they accept support requests at Sales@endbots.com
Failing that, the popular Beetle DESC at the moment is the Scorpion Mini from Robot Power. It is a fair bit larger and heavier than the Endbots DESC, but has a much higher current rating (6.5 amp continuous) and will handle up to 28 volts.
Some builders prefer using two of the single-channel Wasp ESCs from Robot Power. A pair of them are a little lighter than a single Scorpion Mini, and it's easier to find space in a cramped beetle for two small boards than one larger one.
My question: We are working on the design of a pneumatic combat robot (20 kgs), we have tested the chassis part and made the choice of HPA to actuate the jack. The best to control the valve is an ESC or a relay?
Thank you for your reply.
A: [Mark J.] I'm glad that you are enjoying Ask Aaron! You have a choice of three types of R/C interfaces to control your pneumatic valve:
A: [Mark J.] I'm gonna say no. Take a look at the Team Run Amok guide to what radio functions you actually need. The goBILDA does not score well:
A: [Mark J.] I don't know how you determined that you 'need' that particular LiPo pack, but the 25~50C version has been replaced by an improved 'Turnigy nano-tech 1300mAh 4S 45~90C Lipo Pack' with superior discharge performance.
The 45~90C pack weighs 10 grams more and is a millimeter longer and wider than the 25~50C version, but can provide 80% greater current output if needed. It's widely available and will work well in any robot that used the older version.
A: [Mark J.] I wasn't trying to be cryptic. I've covered specific transmitter tweeks that can help with straight tracking in assorted posts and radio articles and I assumed that I'd tied them all together in a single place. Apparently that is not the case, so I've created a new transmitter guide covering this topic:
A: [Mark J.] The Lemon receiver and your Turnigy transmitter operate in the same frequency range, but they speak different languages.
A: [Mark J.] Builders inexperienced with the full range of control options available on an aircraft radio may well believe that any radio that they can slap a steering/throttle mix onto is going to be just fine for their 'bot. In the heat of a fight with some adrenaline pumping, they find their 'bot quite difficult to control: start speed motor differences, over-correcting on steering, trouble carving a smooth turn, and (yes) weaving along a straight line. They start to think they aren't good drivers, when the problem actually lays in their equipment and setup.
The requirements for precise control of a differential-steer robot are much closer to the requirements for control of a fixed-wing aircraft than those needed for a car or boat. Just having sticks instead of a knob/trigger won't make you a better driver, but the suite of settings that come with a good twin-stick aircraft transmitter certainly can -- if you're willing to learn what they do and how to apply them. You'll also have a much larger pool of users to help with any difficulties you encounter, and a greater selection of transmitters and receivers. You'll also pay less for equivalent quality equipment.
If you're having trouble getting a twin-stick transmitter set-up to your liking, I'll be pleased to help.
A: [Mark J.] You're correct, the transmitter mix troubleshooting protocol likely won't sort out your tinyMixer without causing invert function problems. This alternate protocol will do the trick with your tinyMixer:
Throttle Test Power up the transmitter and robot, then push the throttle stick forward a little.
A: [Mark J.] The Banggood FS2A receiver doesn't communicate with the transmitter in the same way a real FlySky receiver does, so setting the failsafes has a different process. I can't read Chinese, but I've become pretty good at translating "Banggood English" to [Actual English]:
NOTE - The very similar Banggood Mini Frsky D8 receiver does not respond to the above failsafe setting process, or to any failsafe process. It is not suitable for combat robot use. Sorry.
What's going on here, and how can I bring back on/off switch control?
A: [Mark J.] Your weapon ESC has a 'Safe Start' arming sequence that requires a 'full-off/full-on/full-off' sequence from the radio to arm itself before operation. The FlySky T6a has an unusual interaction between the transmitter switches and knobs; the switches just activate and deactivate their associated knobs. Those knobs got bumped out of 'full on' position and now the ESC never gets a 'full-on' command -- it's failing the arming sequence.
Here's your correct arming sequence every time you power on the 'bot:
Comment: The ESC made the beeps and started to work. I turned it off and on a couple of times and it still works. Thanks!
A: [Mark J.] This is a known issue with Spektrum Elevon mixing. Due to an error in transmitter firmware the two mixed channels each only provide about half the full travel response. You can bump the mix rates up to the maximum (125%), but that still doesn't get you all the way to full throttle. Here's the complete fix:
Alternate Solution - If you'd rather not fiddle with the transmitter, you can change the response of your motor controllers to provide full throttle at the lower signal level. Follow the calibration procedure on the setup sheet that came with your tinyESCs.
Q: That's got it! New question. My DX6i transmitter is currently powered by four AA alkaline batteries, but I have a spare 2s lipo battery that will fit inside the battery compartment. Can I patch in a matching connector and power my DX6i transmitter with the rechargeable 2s lipo or would it be too much voltage?
A: The Spektrum transmitters have a wide range of acceptable voltage input. I'm told that they will operate without issue from 2s, 3s, and even 4s LiPo packs. So, you can do it, but the capacity of a LiPo small enough to stuff into that battery compartment is going to be pretty small compared to a set of high-quality, low self-discharge NiMH AA cells.
Can I do this without creating a ton of heat?
A: [Mark J.] The correct answer is C) None of the above.
Alternately, if you are using transmitter Elevon mixing you may limit throttle response by setting the Elevator (channel 2) response to less than 100%. Start with 50% and adjust as needed to tune the drive motor performance to a suitable level.
A: [Mark J.] I can save you a lot of time and frustration. R/C airplanes have a similar problem getting the twin servos controlling wing flaps to respond in opposite directions, and they have a quick and simple solution to the problem. A web search for "servo signal reverser" will reveal multiple sources for a tiny, inexpensive device that plugs into a servo lead and reverses its response. Do that!
But now that I've put the chassis of the robot together, the right side drive motors suddenly reverse direction for a split second when I use more than 75% throttle. This happens every 1-3 seconds of drive, making it largely uncontrollable. I suspected that the tinymixer was the cause, and sure enough, when I removed it the motors responded to power normally.
I wanted to get some driving practice in, so I was just driving it around when the RX battery alarm went off on my FS-i6 transmitter and the robot became unresponsive. The transmitter RX battery display shows no bars and the speed/direction lights on the Scorpion are not responding to transmitter inputs. Is this some sort of hardware problem, or is somthing wrong with my setup? I'm running four kitbots 1000 rpm gearmotors with Scorpion mini esc and a 1300mah 95C 4s lipo. [Anacortes, Washington]
A: [Mark J.] Your FS-i6 radio is bi-directional: the transmitter 'talks' to the receiver, and the receiver sends telemetry (like the voltage level at receiver) back to the transmitter. That telemetry function causes the receiver to draw a lot more power than a passive receiver.
I looked up the specs on the BEC output for your Scorpion Mini. Its max output decreases with increasing input voltage to the Scorpion:
Q: Ok so it just so happens that I have a BEC laying around. I jerry-rigged it to the wiring to power the receiver directly and removed the red wire power pins from the Scorpion receiver leads. The low-voltage alarm has stopped and the RX telemetry bars are full, but the robot still won't move. Any thoughts or ideas?
A: Patching in the stand-alone BEC got power back to the receiver and restored operation of the radio system, but the Scorpion ESC is internally powered by the output of its own BEC and that has failed. You can try re-connecting one of the red power wires from the Scorpion to the receiver to see if you can back-power the ESC circuits. I don't think it'll work, but it won't take much effort to try.
Q: OK, I plugged the red power back into the receiver, and now the left drive motors are responding properly but the right side is still dead. Also, the ESC heats up considerably whenever the robot is turned on now. I don't remember it heating up that quickly before the RX alarm went off. What can I do next?
A: Yea, the ESC is toast. All that heat is coming from the charred remains of the former BEC still trying to do something useful and mostly just turning current into heat. Here's what you do:
A: [Mark J.] I think you're fine, Anacortes. The calibration instructions read:
A: [Mark J.] Setting the charge rate is important for reasons beyond battery longevity. The safe charge rate for most LiPo batteries is '1C', which is one times the capacity of battery in amps. Charging a LiPo at a higher rate risks overheating and combustion of the battery; ALWAYS make sure that you charge your battery at a safe rate.
These inexpensive 'plug-n-play' LiPo chargers have a fixed charge rate: typically about 1 amp. This rate is optimal for 1000 mAh batteries.
A: [Mark J.] The standard solution for robot events that do not allow Li-Poly batteries is a switch to safer and universally allowed lithium iron phosphate packs -- also known as 'LiFe' as a contraction of their LiFePO4 cathode material.
LiFe packs have lower discharge rates than Li-Polys, so you'll want to go with larger capacity packs to obtain higher amp peak drain. A pair of 3S 30C 4200mAh packs in series will get you in the ballpark. LiFe cells have different charge requirements than Li-Polys, so make certain that your charger has a specific LiFe setting.
The Dr. MadThrust 1700 kv motor is rated 105 amps of current, and the 30C 4200mAh packs are rated for 126 amps continuous current output with a 168 amp peak. The peak current draw of your weapon motor under load depends as much on weapon size/weight/gearing as it does on the motor but you gave no weapon info. I think you'll be fine -- LiFe packs are more forgiving than Li-Poly packs, and a spinner weapon will pull high current only briefly while spinning up before settling at a much lower level. Best luck.
I'm having some trouble with TinyESC V2s and an FRSky X4R receiver on 4S Lipo (fully charged). When I power up with the remote turned off, everything works fine. Red flashing lights on both Tinys, red flashing light on the X4R.
As soon as I turn the remote on, the Tinys get really hot and power browns out on the reciever within seconds, a few seconds later it shuts off entirely. At the same time, the Tinys get really hot.
I've tried using only one Tiny at a time, to see if the trouble is with one of them and to prevent conflicts with the BECs. Same thing happens.
The motors are Silver spark clones, but I doubt that's important since they aren't even running when this happens (they do run fine for the few seconds before power browns out though).
Thanks for any help. [British Columbia, Canada]
A: [Mark J.] You've been caught in a trap caused by your particular combination of components, Vancouver:
A: [Mark J.] You're welcome, Oak Harbor.
I suspect your problem is mechanical. The FlySky FS-i6 is a great bargain, but to sell such a full-featured transmitter for under $40 they had to cut a few quality corners. In particular the stick gimbal assemblies are not great, and it sounds like one of your gimbal potentiometers has gone flaky.
The good news is that you can buy a replacement stick assembly for less than $10 - shipping included. Select the 'Direction' model to replace the right gimbal that self-centers both axis, or the 'Throttle' model to replace the left gimbal that centers only one axis.
There are multiple YouTube videos that will guide you thru the simple process of replacing the stick assembly. Try this one: How To Replace A FlySky Defective Gimbal. If you need to correct the stick centering after replacing the gimbal there is a trick the maker of the video didn't know: the 'Sticks Adjust' function of the Secret Menu will take care of it. Best luck.
Q: As a clarification to my earlier question, I forgot to mention that both sticks are doing this, and it was not a problem when I first received it. I'm not running a servo off the BECs on the tinyESCs, just the receiver. Does this affect your advice?
A: Gimbals wear out over time -- cheap ones wear out fast. Replacing two gimbals will run $20 plus your time and effort. Replacing the whole transmitter will cost $40 and solve any possible transmitter issues. Let's make sure its the transmitter:
Go into the 'Functions' menu and select 'Display'. Move your sticks around. Are you seeing the same glitchy behavior on this display that you are having with your robot?
Q: There has been no change in the behavior of the sticks. This transmitter also had had problems with binding, so I think I'll just get a new one and use this one for spare parts.
A: That makes good sense to me.
Are there any other options or should I just go get a real radio? [Roseville, California]
A: [Mark J.] The Ask Aaron archives have a few different binding sequences to set failsafe for different transmitter/receiver systems, including a specific sequence for the HK T6A-V2 transmitter paired with the TR6A-V2 receiver. Other HK transmitter/receiver pairs may not respond to that sequence. Worse, that sequence is not officially documented and is subject to firmware changes, which are frequent and often unannounced with HobbyKing products.
A receiver with failsafe capability may offer one or more failsafe modes:
HobbyKing radio systems are poorly documented, subject to change without notice, and generally user hostile. My opinion is that they are not worth the frustration they cause for anything beyond very simple applications. I'd suggest an upgrade. A 'real radio' will not only solve your current problem, but the added features will -- if properly applied -- improve your ability to better control your 'bot.
A: [Mark J.] I'm glad to hear you're enjoying the FlySky combat guide, New Zealand.
The bad news is that you'd need to spend a fair bit more than the cost of the FlySky FS-i6 to get a transmitter you can program to perform an invert mix fix with a switch. The programing you want requires at least four custom mixes that can be assigned to a transmitter switch: instructions are given on the Team Cosmos website. Your FS-i6 has only three custom mixes and none of them can be turned 'on/off' with a transmitter switch.
The good news is that you can add a bit of hardware that will give you a switchable invert solution. Several on-board mixers like the FingerTech tinyMixer have two inputs for the channels to me mixed plus a third input cable that plugs into an auxiliary channel (5 or 6) on your receiver. Assign that auxilliary channel to one of the transmitter switches on the FS-i6 with the 'Aux Channels' function and a flip of that switch will change the mixer output to inverted operation.
Q: Following with interest. I've been trying to figure out an 'invert' switch on my Taranis Q X7 and I can't seem to do it properly. Either left/right inputs is inverted or forward/back is. Am I simply trying to do something beyond the transmitter's capabilities? [Reddit comment]
A: Taranis transmitters use the highly configurable 'OpenTX' firmware. There is very little that an OpenTX transmitter cannot do, but figuring out how to implement even simple functions can be a challenge.
Here's a video showing how to setup an inverted airplane 'flight mode' on a Taranis transmitter. The same method works for inverted robot control -- don't reverse the rudder or aileron channels, just the elevator.
I'm having a bit of trouble trying to setup the radio gear. I followed all the instructions on binding the system:
Any idea what's causing this problem? Is it because of the battery, the receiver, the ESC, or is it something else? [Mandurah, Western Australia]
A: [Mark J.] You've done your homework and followed the receiver binding process correctly. There are a couple of 'first ever' builder traps that are possible sources for your problem:
Q: Hi. It's the one asking about the Hobbyking radio gear. Thanks for diagnosing the problem. It turns out the radio gear does work fine with just the Sabertooth ESC, so fitting the servo was the problem, as you pointed out. Also, based on your recommendation, I have just recently placed an order for a BEC rated at 3A. Will this be enough so I can operate the servo as well?
Also, I don't know whether or not you have already posted a wiring diagram of how this should be fitted together? I really don't want to mess this up.
A: You're welcome, Mandurah.
Different servos will draw different levels of current, but three amps should be ample unless it's some monster servo. A 'standard' servo draws about 0.5 amp under heavy load.
The diagram should give you confidence:
Comment: Hobbyking radio and Sabertooth ESC guy here. Just wanted to let you know the BEC has arrived and has been installed based on the diagram. Everything now works perfectly.
Thank you so much for all your help and knowledge. You are a credit to the whole robot combat community.
A: Aw, shucks, 'tweren't nothin'.
A: [Mark J.] Yes, the FS-i6 transmitter has perfectly good mixing. Unfortunately, the FlySky-i6 manual is so poor that even if you had a copy you'd still be a long way from setting mixing up correctly. I strongly recommend that you download a manual for any radio system you're considering
I'm working on a full guide for combat robotics use of the FS-i6, but in the meantime I can give you enough help to get mixing enabled. Note that a lot of this makes very little sense -- like pressing and holding the 'Cancel' button to save your new settings. Chinese radios...
To enter the main menu, long press the 'OK' key. Use the 'Up' and 'Down' keys to select the desired section and press 'OK'. Then use the 'Up' and 'Down' keys to select the desired section ('System' or 'Functions') and press 'OK'.
Navigation Within a Section:
If you think the turn rate of your robot is too slow, go back into the 'Elevon' menu and increase the Channel 1 control rate upwards from the 50% rate entered as default. Do not tinker with the 100% control rate on Channel 2.
Come back in a couple weeks and I'll have the full combat guide for the FS-i6 ready.
A: [Mark J.] Robot controllers like the 'Scorpion Mini' expect the spring-center 'neutral' signal from the radio to be in the middle of the signal range. Your Fly Sky and many other pistol grip transmitters have the spring mechanism for the throttle trigger set off-center to give more control range in the forward direction. That works fine for R/C cars that don't much care about precision in reverse, but your Scorpion ESC interprets that offset transmitter signal as: back up at 1/3 throttle.
Fortunately, we can correct that interpretation by recalibrating the ESC to recognize the new 'center point'. You may want to disconnect the motors from the Scorpion Mini during calibration to prevent run-away:
Throttle Test Power up the transmitter and robot, then pull the transmitter throttle trigger back a little -- a 'forward throttle' command.
Q: Followed your instructions and, success! I can't thank you enough! This, paired with a 4s battery gives me a lot more power and control than before.
A: You're very welcome. Now get out there and beat up some robots!
A: [Mark J.] Do Not Fuse controllers on a combat robot! Your motors and speed controllers should be considered as their own expendable fuses -- you want them to survive absolutely as long as they can to keep you in the match. It's a long drive back home with a robot that lost because a fuse blew out too soon.
The ONLY fuse protection you should consider for your combat robot is a full power circuit fuse to keep your LiPo battery from going into thermal failure. This is required by some tournaments. A direct short caused by inflicted damage or catastrophic component failure in the power circuit will pull so much current from the LiPo that it quickly overheats and bursts into jets of smoke and flame, toasting your robot. For a properly selected battery, that level of current will be well in excess of the maximum draw expected from all the robot's motors under the most extreme anticipated conditions.
General Rule - estimate the maximum expected current draw of all weapon and drive motors under their greatest stress: drive pushing hard against an immovable object and weapon simultaneously starting up under unusually high load (e.g. inverted and weapon dragging on the arena floor). You can use the 'burst' ESC ratings as a rough estimate. Select a battery fuse rated for TWICE that current level. If the tournament does not require a power fuse, consider doing without.
I need a way to connect two 2s Lipos to two brushless escs and the receiver using BEC, as well as incorporating a Fingertech mini power switch. I would like, if possible to have it guarantee power is drawn from each battery equally, and that all the power is not diverted to a single motor/ESC when the bot is turning, as the ESCs and Motors are only able to withstand 8.4 volts each. Can you think of a way to achieve this? [Oak Harbor, Washington]
Using two batteries of smaller capacity offers no electrical advantage and complicates the wiring. To get equal power draw the two batteries are wired in parallel, fed thru the switch, then split out again to the two ESCs in parallel. Voltage to either ESC/motor does not exceed 2s LiPo level.
For either one or two batteries, if your ESCs have built-in battery eliminator circuits you should clip the red (power) wire on ONE of the two ESC leads to the receiver to avoid BEC conflict.
Q: It's me from Oak Harbor again with some clarification about my earlier question. The reason I am using two batteries is so they will fit into my robot, and I cannot use one of the ESCs to power the receiver, because the receiver has a power input port that is separate from the channel output ports. Could you show how a BEC would be added? Also, thank you so much for all the helpful advice that this site contains.
A: You can power the receiver thru any port - the BAT power port that appears on some receivers is a throwback to the pre-BEC days when receivers had their own battery packs and a separate port was needed to keep the battery from taking up one of the servo output ports. The power and ground lines from all the receiver ports tie together in a common power bus internally.
Save the space and weight and use the BEC in either of your brushless controllers to power the receiver.
I checked the wiring and it's exactly as I've drawn it. What went wrong? [Columbus, Ohio]
A: [Mark J.] I've re-drawn your wiring sketch and removed the weapon components to focus on the problem.
I've drawn a proper 'common ground' circuit (minus receiver for clarity) that has all the ESCs sharing a single zero-potential ground. It does not split the load equally to the two batteries, but it has no ground loop and will not burn down your shop:
A: [Mark J.] The Whyachi switch socket screw is completely isolated from the electrical circuit by a nylon 'top hat' grommet that extends thru the contact bar hole. The screw is isolated only to prevent the Allen wrench from accidentally shorting to another exposed electrical component. Direct current at normal robot-level voltages will not give you a 'shock' on touching a terminal -- you won't even feel it.
The Whyachi switch uses spring pressure to make contact, not screw pressure.
A: [Mark J.] The only '3-volt' gearmotors I know of are made by Tamiya, and they are not nearly strong enough for the current level of robot combat. The motors are weak, the plastic gearboxes shatter, and the skinny little axles bend. Worse, I don't know of any electronic speed controllers that will work from a 3 volt power supply -- most won't operate below 6.5 volts. You'd be well advised to dump those motors and go with something more commonly used in combat robots.
If you insist on running Tamiya gearmotors, or if you've got a motor I don't know about, you can use a 4-cell LiPo battery (14.8 volts) and program your radio transmitter to limit the drive motor controller output to a maximum 25% of full throttle -- effectively limiting motor voltage. Twenty years ago we ran Tamiya motors at more than 7 volts without trouble; if you're afraid of burning up drive motors you're in the wrong sport.
You'll need an R/C transmitter that has 'Adjustable Travel Volume' (ATV), sometimes called 'Travel Adjustment'; check your radio manual. Most combat-capable radios have this feature. Set the travel volume on the drive train throttle and turning channels to 25%, and leave the weapon channel at 100% so your brushless weapon motor will get the full 14.8 volts. This technique is a little hard on the drive motor controllers, but those Tamiya motors draw so little power that it won't be an issue.
I'd much rather see you get proper drive motors and a weapon motor that can all run on at the same voltage -- they're certainly available.
A: [Mark J.] Yes, with a little added hardware. Your Quantum radio, like most pistol-grip R/C systems does not have the 'mixing' capability to to control a robot. Your steering 'wheel' (radio channel 1) controls your steering servo to point your front wheels, and your throttle 'trigger' (radio channel 2) controls the motor speed controller for forward/reverse motion. To control a 'tank-steer' robot the control channels must be 'mixed' to each control the motor(s) on each side of the robot, but in different ways:
He wants to use a pistol-grip style radio, we're looking at the Spektrum DX5C with the SRS6000 receiver due to its built-in gyro. My concern is that it only lists a failsafe on the throttle channel. I see that some of the Spektrum receivers have the (sometimes undocumented) ability to switch to a mode where all of the channels will fail in the bind position if you bind it the right way, but I have not found any info on this receiver yet.
Looking through the radio archives, you have a lot of suggestions for radios/receivers with good (or at least passable) failsafe capabilities. However, when I search for them they seem to all be coming up as "discontinued" items. Do you have any suggestions for current receivers, or know of a good list somewhere? [Fredericksburg, Virginia]
A: [Mark J.] Well, now you've opened up the jumbo can-o-worms. Where to start...
Radio gear has been changing at a ridiculous rate since Chinese manufacturers jumped into the game headfirst a few years back. New transmission protocols, open-source firmware, onboard serial networks... which is why all the receivers you've found in the radio archives are outdated and no longer in production. Our robots don't really need all this new fancy stuff that's aimed mostly at the drone market, but we make up such a tiny portion of R/C gear sales that we have to go along with whatever happens in the larger industry.
The upside of the Chinese R/C takeover is a stupendous drop in prices. The downside... well there are several downsides:
Factory Support There isn't any. That's why you need your friendly knowledge base.
Initial Quality When you're paying $50 for a radio system with features that would have cost you $350 fifteen years ago, something's gotta give. The feel is cheap, the switches and gimbals wear out, and sometimes it doesn't work right out of the box. At these prices, you just go buy another one. Some are better than others.
Unreadable Documentation I know I already mentioned this, but it's so bad I wanted to put it in twice.
Taranis Q X7 A very sexy system widely used in robot combat. Better than usual quality, looks great, but it's a complex radio that will intimidate novice builders. Does not come with a receiver, but multiple full-featured receivers are available.
One last thing I don't recommend receivers with built-in gyros. A gyro has to be specifically oriented within the robot relative to 'up' and 'forward'. This can make fitting your receiver-gyro unit into a small robot awkward. Robots also have special requirements for gyro shut-off when the robot happens to be inverted that a receiver-gyro combo is unlikely to provide. I you want a gyro, get a stand-alone unit.
Sorry for the long and rambling answer, but I did warn you that this is a big can of worms. If you'd like to hear other opinions on this subject there is an active 'Combat Robotics' group on Facebook that would love to give you a full spectrum of opinion -- and then some.
A: [Mark J.] There are some fairly common misconceptions about hobby-grade brushless ESC amperage ratings that I need to clear up:
A: [Mark J.] Let's do a quick check. The calculation is:
You didn't tell me the weight of your 'bot or the size of the wheels, but a 'worst case' four-motor beetleweight with overly large 3" wheels would break traction at around 1.5 amps per 22.2:1 Silver Spark for a max 6 amp total battery drain. Your battery is safe.
A: [Mark J.] A better idea is to design your robot with components spec'd to handle the current loads -- with some to spare. You really don't want to be a sitting duck for 15 seconds while your breaker resets.
Additional Problem Auto reset breakers are not designed for the physical shock loads combat robots experience. A sharp impact will trip the breaker well below its current rating, which makes them worse than useless.
A: [Mark J.] I didn't have a DX6i in my workshop, but builder Travis Schmidt found the answer for me: it's a 220uF 16v electrolytic capacitor. Thanks, Travis!
A: [Mark J.] There is a simpler and more workable solution. A heading hold gyro of the type used in R/C helicopters will detect an unwanted rotation of your 'bot and signal the drive motors to compensate for the rotation. The gyro is lightweight, inexpensive, uses your existing drive train, is simple to implement, and has the advantage of operating when the robot is moving rather than locking you in place 'til the weapon is up to speed.
A: [Mark J.] Builders often fall into jargon to answer new builder questions without realizing how confusing that can be.
Most electronic speed controllers (ESCs) used for robot drive motors have a 'Battery Eliminator Circuit' (BEC) that supplies ~5 volt power to the receiver via the three-wire cable that connects the ESC to the receiver. If any of your ESCs has a BEC (check their docs) you will not need any additional power for the receiver.
If your ESCs lack BECs you can purchase a small and inexpensive external 'universal' battery eliminator circuit (UBEC) that connects to the main battery and plugs into any available receiver port. A 'Switch Mode' type UBEC is preferable for battery voltages greater than 12 volts.
More info on BECs: Dimension Engineering BEC FAQ.
A: If you're running a single direction 'forward-only' controller, all you need to do is plug it into a switched auxiliary channel. With default transmitter settings:
A: [Mark J.] Welcome to the exciting world of Chinese R/C manuals. I strongly suggest that you download the manual for any R/C system you intend to purchase and make sure it makes sense to you before you buy. Setting up a transmitter with a poor manual is frustrating and time consuming. To your question:
Note The FS-i6s is designed for quad-copter use and setting up the transmitter for robot combat requires some deep thought and imagination. It is not on my 'recommended' list for this reason. The Team Run Amok Combat Robot Radio Functions Guide will help sort thru transmitter functions to find a radio better suited to combat robots.
A:
Servo savers protect against momentary shock loads, which is not what you have here. Prolonged straining against the servo saver spring will pull a lot of current and shorten servo life. Be nice to your servo and fix the problem correctly. Two options:
For more info on transmitter functions and their use in combat robots see Radio Control Systems for Combat Robots.
A: [Mark J.] See Frequently Asked Questions #19.
Q: as would be a circuit of a combat robot with a brushless motor on the weapon and 2 engines brushed on the wheels.[Michoacan, Mexico].
A: If the diagram in FAQ #19 isn't what you're looking for, I'm not sure what you want. Maybe this will help:
A: [Mark J.] Let's look at the separate responses of the left and right motors:
Response: That makes 100% sense. Thanks so much for catching that. I tried swapping the plugs in the receiver and it did what you said it would do. I will contact botkits for a replacement immediately.
Thanks, David [Livermore, CA]
A: [Mark J.] I enjoy estimating energy transfer from the pitch and volume of my opponent's screams, but I suspect that you're looking for something more objective.
If your radio gear is set up for telemetry (a FlySky FS-i6, for example) you can add a compatible optical tachometer to read the RPM of your weapon from the transmitter. Convert the RPM of the weapon before and after a good 'hit' into stored energy levels; the difference in energy was transferred by the impact.
With a horizontal spinner a good part of that transferred energy may go into throwing your 'bot across the arena in reaction, but with a vertical spinner the greater portion of the energy should go to your opponent.
A: [Mark J.] Yes, it's fairly easy if you know your way around a circuit board. We can replace a knob's potentiometer with a 3-position ('center off') toggle switch and a pair of resistors that will give high/mid/low signal control.
Open the back of your transmitter and locate the potentiometer on the back of the knob you wish to replace. The ones I've seen have been 5k ohms. It has red, brown and black wires attached, as shown at right. Note: there may be a white wire attached with the black wire; keep them together. Transfer the wires to the toggle switch with resistors attached as shown at far right. The resistors should each be roughly half the value of the potentiometer -- in this case about 2.5k ohms.
Would you like to see it done? There's an overly long, excruciatingly detailed, and very shaky YouTube video.
A: [Mark J.] Game controllers work wonderfully well for controlling software designed to be controlled by game controllers. Nothing in the real world has that same relationship with game controllers.
Get a conventional R/C transmitter. Their features and design have been refined over the last five or six decades to be an effective and transparent interface between your hands and real-world objects like combat robots. It really won't take you long to adapt.
A: [Mark J.] The hamburger is bad. The answer depends on how precisely you need them to move 'together like one motor' and what type of 'dc motors' you use.
If you need two brushed DC motors to power wheels on the same side of a tank-steer robot or gear together to a common output shaft, the motors can be wired in parallel to the output of a single-channel electronic speed controller; see the diagram.
A: [Mark J.] The 'bloke' offering A123 cells in the forum is the president of the Robotics Society of America, a professor of robotics at San Francisco State University, has long standing in the robot combat community, and has for many years run the "world's largest robot competition". He and I dislike each other, but he isn't just some random bloke -- judge me by the enemies I have made.
Q: So... why don't you and Mr Calkins get along? [Livermore, California]
A: We have incompatible taste in clothing. Robot questions, please.
A: [Mark J.] Electric automobiles have different needs than do combat robots. The Panasonic-Tesla cells are based on a lithium-nickel chemistry which is not generally as safe as the A123 and has lower energy density than lithium-cobalt. Panasonic has not released the exact specs of the Tesla cells but it's known that the prime design focus was on stable performance over thousands of charge-discharge cycles -- not something of great interest for combat robots. There are available lithium cells that better suit our needs.
A: [Mark J.] You can still find DX5e radios if you really want one - try eBay - but there are better radios available for sub-$100. No radio system in that price category has all the features and documentation you might want, but I generally recommend the popular FlySky FS-i6 radio. Take a look at this post farther down in this archive for my recommendation reasons and for alternate suggestions if you want to spend a little more.
A: [Mark J.] The more info you can provide about your 'bot, the better chance I have to give a direct and useful answer. Given the symptoms, I'm gonna guess that the motor is a brushless outrunner, since brushless is 'in' and an 'inrunner' style motor would be a horrible mistake for this purpose.
Possible cause #1
Brushless motors rely on the brushless ESC to provide power to the correct motor windings at precisely the correct time. With the non-sensored brushless motors commonly used in insect-class combat robots, the ESC is not given data on the position of the rotor relative to the motor coils -- it has to take a guess based on small changes to the electrical properties of the motor as it rotates. At slow speeds and heavy loading, the ESC may guess incorrectly and send power to the motor windings at the wrong times. What you call 'sputtering' is in this case more correctly called 'cogging'.
I suspect that the ESC you have chosen for your weapon is a poor match to the motor. There are so many different motors and ESCs that it is very difficult to track their compatibility. I suggest that you join the Combat Robotics group on Facebook and tell them:
Possible cause #2
It's also entirely possible that your battery is not fully charged and/or does not have enough capacity to deliver full voltage under the heavy load of your unspecified weapon motor starting up from a full stop. The drop in voltage can 'brown out' your electronics and cause a sputtering of the type you describe.
LiPoly batteries are shipped with only a partial charge, so before you go off and ask the Facebook group for help give your battery a FULL CHARGE and try another test.
Five Days Later...
I haven't heard back from Arlington, nor have I seen any posts on this topic in the forums. I'm guessing that a battery charge did the trick.
P.S don't tell me anything about amperage just voltage. [Arlington, Virginia]
A: [Mark J.] I'm concerned that you're considering a heavyweight build but that you do not understand how to connect a group of batteries in a series circuit.
I'm also concerned that you don't want to discuss amperage.
See this post father down in this archive about connecting batteries in series and parallel circuits, and 'mouseover' the image at left.
A: [Mark J.] A couple of more-or-less practical methods:
Disadvantage - some of the individual cells will be drained more than others which may unbalance charging. The whole pack must have excess capacity for this to work.
Disadvantage - it is VERY hard on the ESC to spend equal time flowing and restricting current flow under all motor load conditions. You may blow the ESC, but it will save the motor. Make sure the ESC can handle the full 40 volts.
1) I'm very new to this, could you double check my gearbox choice (or even motor choice if necessary)?
2) I will be using A123 LiFe batteries (3.2v, 1100 mah 30 amp discharge). If my calculations are correct (which I doubt) 1 of these batteries should be able to power the weapon and drive for 25.714 minutes.
How many batteries do you think I need? Thanks for the help. [Hicksville, New York]
A: [Mark J.] I can't see all your input fields in the image you sent from the
Team Tentacle Torque Calculator
, but it's clear that you have not entered the correct values for the RS-395 motor. Let's start over with the correct values:
The 20:1 ratio P60 gearboxes with the 2.375" wheels give the best performance from the RS-395 motors in a moderate size arena: around 5.5 MPH, reaching that speed in about 6.5 feet. That's ample speed and power to push around a big spinner weapon. The 26:1 gearboxes would be a little easier on the motors, but the 20:1 should be fine.
The RS-395 motors run well between 12 and 15 volts -- you'll need four LiFe cells wired in series to provide 12.8 volts. The drivetrain will use about half of the capacity of the 1100 mah cells in a 5 minute match.
Your weapon motor is a powerful choice for a hobbyweight. It operates in the 22 to 30 volt range, so you will want a separate battery to operate your weapon. That battery will require between 7 and 9 LiFe cells wired in series. You have not given me enough information about your weapon to calculate the battery capacity (mah) needed. Heavier, longer blades will use more battery power to spin up, and the reduction ratio between your weapon motor and blade will also impact current usage. Example, courtesy of the Team Run Amok Excel Spinner Spreadsheet:
Are you sure you wouldn't like to build a nice wedge robot instead?
Q: Thanks for the quick response. My weapon's current plan is a 5 pound 12 inch diameter 1/2 inch thick S7 steel asymmetrical "disc", shaped somewhat like a teardrop. The thickness is to avoid vertical spinners from breaking the blade. None of this is set in stone but the 12 inch diameter, and somewhat the weight.
My fights will only be 3 minutes long. The bot does strategically not need to be fast - in fact it should be as slow as reasonable to save weight and power consumption. The 26:1 gearboxes look best to me to that effect.
I hope to have as little power left over after a fight as reasonable, perhaps only enough to last 4 minutes in total. That being said, I still think I can squeeze 12 LiFe A123-18650 batteries into my bot, in 2 groups of 4 and (with slight design alterations) 2 groups of 2. But of course the fewer needed, the better.
Funny you should mention wedgebots, as I eventually hope to build a bot to take down Original Sin! Anyway, do you have any blade alteration or battery number suggestions? Thank you.
A: A 12" diameter, 1/2" thick steel disk weighs more than 16 pounds, so your 'teardrop' design must have a LOT of material cut away from the full disk. A simple steel blade 12" long, 1/2" thick, and 2.875" wide weighs 5 pounds. A 5-pound weapon is heavy for a hobbyweight, so be careful with your weight calculations.
The number of cells I'm suggesting for your batteries are not there for current capacity, but simply to obtain the voltage needed for your two motor systems running at differing voltages. You can't run your drive motors at 30 volts, and running your weapon motor at 15 volts would drop it's power output from 1000 watts to 250 watts. 'Tombstone' has this same problem and solves it the same way that I suggest you do: two battery packs with differing voltages.
I'm a bit concerned about the ability of the cells you have selected to provide the start-up amperage needed by your monster weapon motor. The motor is rated 40 amps continuous, but can briefly draw as much as 140 amps under starting load and will draw over 70 amps for as much as two seconds while staining to pull that heavy weapon up to speed. Given that your cells are rated for 30 amps continuous draw, pulling more than twice that current may damage the weapon battery. You may want to reconsider your LiFe cell choice.
Q: Thanks for the advice. I'm happy to lock in 4 1100 mAh batteries (the yellow ones) for the drive power with 26:1 gearboxes, if you think that's not too many.
A: My earlier explanation was not sufficiently clear. A battery pack for a specific application must supply three things:
2) The current needed by the device -- without damage to the battery (amps); and
3) A suitable voltage for the device (volts);
We have also calculated that the peak current draw of the drivetrain is about 10 amps, so your 30 amp continuous output cells also have that well covered.
That leaves voltage. To get adequate performance from your chosen drive motors you need a battery pack that will supply 12 to 15 volts. Each of your cells produces 3.2 volts:
Q: Now for the weapon power. Apparently the bigger A123s (green) are back in stock. They have a very slightly lower voltage (3.2V) but a higher amperage(50A), plus a maximum impulse discharge of 120A.
However, as I understand it, the same number (7-9) of these green batteries would be needed for the weapon motor's voltage as of the yellow batteries. Since the greens weigh more and are slightly bigger, this is less ideal. LiPos are not allowed at my upcoming event. Is there another battery you recommend instead?
Not using 100% of my motor's capability seems ok to me, as it might help prevent breakage (I think). Obviously I want to use as much as possible, but I'm okay with using less. Perhaps not filling up the voltage requirement completely but satisfying the corresponding Amp requirement would do the trick. The green A123s might be better at that. I currently have 1-1.5 pounds to spare for batteries, and the fewer cells I can reasonably use the better. What do you think?
I plan on ordering the parts this week so I can experiment with a prototype before I finalize the bot.
A: Your problem is that your weapon motor is, as I mentioned before, a powerful choice for a hobbyweight. It requires both high voltage and a high peak current capacity. Having a big weapon motor and not running it at full voltage is a serious waste of power. Power varies with the square of voltage, so dropping a couple of cells cuts your power by almost half:
If you ask around the on-line forums, someone is going to suggest that you build a 9-cell battery pack to power the weapon and 'tap' the pack at 4-cells to power the drivetrain. This is possible, but I cannot recommend it. You'll be drawing more mower from some of the cells than others, and the draw from that big weapon motor may 'brown out' the drive and electronics. Proceed on that path at your own risk.
I think I'd go find a more reasonably sized weapon motor that would run well at four or five cells, downsize the weapon rotor, and run the whole bot off a single battery pack.
A: [Mark J.] Builder Robert Cowan has a nice video that covers the entire process of 'flashing' the reversing SimonK firmware onto brushless ESCs. I wouldn't call it either simple or easy: SimonK Firmware Flashing Tutorial.
A: [Mark J.] Too many variables for a 'rule of thumb' -- how about a calculated solution? The Team Run Amok Spinner Excel Spreadsheet calculates the mass, moment of inertia, stored kinetic energy, tip speed, spin-up time, AND the approximate battery capacity requirement for your spinner weapon. You'll need Microsoft Excel to run the spreadsheet.
In general, the capacity needed for your weapon will be much less than the capacity needed for your drivetrain.
A: [Mark J.] I admire your determination, Arlington. Not content to kill just one receiver, you killed a second one to make sure you were doing something wrong. Let's see if I can keep you from killing a third.
You didn't mention how and to what you were connecting the battery. The battery should connect to your weapon and drive motor controllers (ESCs), and the 3-wire connectors from those devices should plug into the receiver. Your drive motor ESC has a 'battery eliminator circuit' (BEC) that reduces the battery voltage to a level safe for your receiver (5 or 6 volts) and feeds that voltage to the receiver via the 3-wire connector. Do Not Connect the main battery direct to the receiver -- 11.1 volts will generally destroy them (smoke).
Buy another receiver and follow the wiring description in the Ask Aaron FAQ #19. Make sure you get the polarity correct.
----------
P.S. - I'm genuinely sorry for your misfortune. I've had a few trying days but I promise I'll be more sympathetic in my answers to your future questions.
A: [Mark J.] We discuss general LiPoly mounting considerations in the Ask Aaron LiPoly FAQ. Actual mounting technique varies with the size of the battery, but you're correct that zip-tie mounting is to be avoided! Hard case lithium batteries are worth considering, but the selection of hard case batteries is poor compared to LiPoly soft-packs.
My favorite mounting technique at the moment is to make a fabric sleave to hold the battery. Tabs on the sack can be bolted to the chassis and the fabric distributes loading on the battery over a large area.
A: [Mark J.] For a sub-hundred-dollar radio recommendation -- see the post directly below.
For a combat robot wiring diagram and description -- see Frequently Asked Questions #19.
A: [Mark J.] Start by reading thru my R/C radio functions guide. Radios with poor manuals and complex set-up are terribly frustrating for builders new to R/C systems. The HK-T6a manual is useless and the transmitter must be plugged into a computer to set any and all of the functions. You will need to beg for help in the on-line forums, but the radio is used by many builders and - with patience - it can be made to work for combat robotics.
While the $25 China-direct price tag of the T6a is very attractive to budget builders, by the time you add in the USB cable ($4) to program the transmitter from your computer and the shipping from China ($18 for 10-day delivery) you're pushing $50. For that price you can buy the 'next step up' FlySky FS-i6 radio system from any of several US-based hobby shops on eBay.
The FlySky FS-i6:
Q: What if I have a bit more money in my budget for an R/C system? [ex proprio motu]
A: I don't know of a full radio package under $100 that is a better choice than the FS-i6, but a number of very nice R/C systems open up if you can push into the $100 to $200 price range. For example:
A: [Mark J.] Although the HK-T6a is an undeniably good value, the documentation is miserable and set-up is openly user-hostile. If you only have $25 to spend on a radio system this will do the job, but it's like spending $1 on a hamburger -- you shouldn't expect much. Take a look at my R/C radio functions guide to help sort out what features are and are not useful in a combat radio system.
Back to your problem: the HK-T6a can be configured to failsafe to user-determined settings, but the skimpy manual does not mention how this is done. I was able to find a forum post that claims the following procedure sets failsafes correctly:
A: [Mark J.] Different receivers have different failsafe capabilities and binding procedures. It's important to read the receiver instruction manual carefully to fully understand how your receiver responds to transmitter signal loss and how to set failsafe options.
The Orange R620 receiver has two failsafe modes on signal loss:
A: [Mark J.] Most tournaments require a visible 'power on' indicator light as a safety feature. If the light is on, the robot is active and dangerous. In small 'bots this function is often met by the indicator light on a speed controller, but in larger robots there is typically a dedicated power light.
A: [Mark J.] You will damage your LiPoly battery if you discharge it below about 3 volts per cell. DO NOT continue to use a damaged lithium battery! See the 'Recognizing a Damaged Li-Poly Battery' section of our Li-Poly Battery FAQ - and read the rest of the FAQ while you're there.
Most electronic speed controllers have a feature that shuts down the robot at around 3 volts/cell to protect your lithium battery from over-discharge. With this feature turned on it is safe to run your robot 'til it stops. This is handy for practice, but you don't want your ESC to shut your robot off in combat! Check your user manual to learn how to turn this feature on and off.
A: [Mark J.] Several different receivers can be used with the DX6i transmitter and you didn't mention which receiver model you have. Perhaps it's the Spectrum AR610 with two antennas: one short and one a few inches long? 900 MHz radios like the Spektrum have MUCH shorter receiver antennas than the older 75 MHz radios -- they were about 20" long!
Do not cut the antenna wire. Try coiling the part of the longer antenna between the receiver and the shrink-wrapped 'amplifier' around a short piece of plastic soda straw. A piece of tape will hold the coil in place.
You may want to read our guide on Radio Reception Problems in Combat Robots for more antenna tips.
A: [Mark J.] I don't know of any currently available game controller style standard R/C transmitters, but you can hack an existing controller for R/C. This seems like a good idea to gamers who are very familiar with the controller-style layout -- but the thing is, you aren't going to like it.
All those games you play on your favorite console were designed and tuned to respond correctly to the inputs of the game controller, but real-world stuff like combat robots have their own real-world control requirements that are much better dealt with by the control range and layout of conventional transmitter inputs.
Everybody I know who went thru all the trouble to hack a game controller for robot combat quickly gave it up and went to a conventional controller. They simply work better. Suck it up and learn to use a real transmitter.
Q: In response to the guy who asked about gaming-like transmitters, Team Bronco use the Vexnet Joystick, which is designed very much like the controller of a gaming console. Wouldn't this work for them? [Fremont, California]
A: [Mark J.] Sometimes I know more about the builder than shows up in the question and answer. The question came from a novice builder of insect-class 'bots.
I recently purchased a new 'Weta 2' from Kitbots. At some point the drive system started to get a little bit funky. I'm not sure if I just dug around the insides too much and maybe did something to it, but I don't believe that it was like this upon delivery. I've asked countless people about this gearmotor/esc issue and has eluded them all, including both Pete Smith and Kurtis Wanner of Fingertech fame.
I have tried to rectify this issue by swapping out the drive ESCs with new ones. Same issue. I even bought a pair of botkits 22mm gearmotors and tried those out instead. Same issue. I even suspected that perhaps the weapon ESC was taking too much power away from the drive system. But upon disconnecting power to the Weapon ESC and trying again...well. You know. Same thing. And yes, both the batteries I used to test this were at full charge.
Before I go out and spend all of my money replacing everything imaginable to no longer experience this, I thought I'd come to you. Do you have any idea what could be going on?
Thank you sir, David R. [Livermore, CA]
A: [Mark J.] So, you 'asked countless people' before finally becoming so desperate as to ask me... It's good to know where I rank.
- Sherlock Holmes, "The Sign of the Four"
If it isn't any of those components, what's left? Improbably: it's your radio. I recognize the radio you're using in the video: a $25 Chinese unit known for awful quality control. Try running the 'bot with the receiver unpacked from that tight Weta electronics bay to make sure the circuit board isn't getting warped. If that doesn't help, borrow another radio for a test. I know it's unlikely -- but what else can it be?
Update: David R. replaced both the radio and speed controllers for different brands and got things working. The true cause of his problem remains a mystery. An interaction between radio/ESC and drive motors that were particularly electrically 'noisy' perhaps?
A: [Mark J.] Safe yes, but radio-frequency interference can travel along a common ground and cause mysterious glitches in electronics. It's good practice to keep grounds separate where possible. If you run into a difficult to trace electronics problem you might try independent grounds -- and keep your power leads as short as possible.
Hold on... you're not planning on a common ground thru the chassis, are you? That's a very poor idea! Any lose or damaged connection has a chance to short to the uninsulated chassis. Plus, the whole framework becomes an antenna to radiate interference. Don't do that!!!
A: [Mark J.] It's difficult for me to recommend any of the inexpensive computerized Chinese radios to novice builders. The Flysky FS i6 has the required functions for combat -- but like many other Chinese radios the manual is incomplete, poorly written, and assumes prior experience with R/C radio systems. Read the manuals to see if you can make sense of them before you buy any radio system:
The documentation does not even cover all of the features of the radio; for example, there is no mention of setting up the failsafes. A web search for "FS i6 failsafe" will get you to a demonstration video, but the video assumes that you have prior knowledge and experience in setting failsafes. This radio would be very frustrating for a first-time user.
A: [Mark J.] Do you think it's wise to trust the performance of your carefully designed, finely built, expensive combat robot on a receiver that costs less than a cheeseburger and fries?
Opinion: quality control on cheap HobbyKing electronics is awful. Sometimes they simply don't work right out of the box; sometimes they work for a bit and fail without reason; sometimes a good impact kills them. Documentation is awful and support is generally non-existent. For backyard RC hobby toys where a failure just means you have to play with another toy that afternoon, the low price justifies the lack of reliability. For combat, no.
Disclaimer: many builders use Orange receivers and transmitters, as well as other HobbyKing-sourced electronics. The OrangeRx R610V2 is compatible with DSMX transmitters like the DX6i, but you may have some trouble binding it to your transmitter. See this discussion for help in setting the DX6i to 11ms mode. Personally, I'd stick to Spektrum receivers.
Q: So which receiver would you suggest? I didn't realize Spektrum had light ones. Would the AR6100E work? For some reason eBay price for new is 9£ but off website is $50. Can I trust it?
A: The AR6100E is not suitable for combat robots. Different Spektrum receivers failsafe in different ways. Some work for robots and some don't.
Can you trust eBay dealers? Depends on the dealer. There are counterfeit Spektrum receivers out there, so be careful. I'd buy from a source more reputable than eBay.
A: [Mark J.] Your Spektrum DX6i transmitter has a function called 'MODEL NAME' that can save the set-up info (mixing, trims, channel reversing, exponential response, dual rates...) for up to ten different robots. Check your transmitter manual for how to set this up -- I think its on page 35. Enter and save the set-up info for the two 'bots under two different model names and switch between the two models when swapping 'bots. If the two bots should happen to use identical transmitter settings this is not needed, but optimum settings for different robots are unlikely to be the same.
It's important to know about the many available functions on a modern computerized radio transmitter. Which functions are useful in robot combat? How do those functions interact with each other? How do you adjust those functions to correct a control issue?
Team Run Amok has several guides to assist robot builders in the selection, set-up, and troubleshooting of remote control radio systems. Of special interest is the Transmitter Programming for Combat Robots Guide. The guide was written for a Futaba transmitter, but the functions covered are common to most computerized transmitters.
Another common problem: unreadable manuals that come with cheap Chinese radio systems. Many of these manuals are poor translations that make very little sense. If you can't understand the manual you have very little chance of setting up the radio properly. Here's an actual example:
Download the manual for any radio you are considering purchasing; if you can't make sense of it you should buy a different radio.
Pushing concerns about proportional control and reception aside, how is this even possible? Is it legal within the rules considering it has an active weapon? [A server in California]
A: [Mark J.] A friend has a Parrot drone that uses an app in his iPad to control flight via a direct Wi-Fi connection. Multi channel proportional control is good, and range is about 50 meters. It also sends real-time video back to the tablet. A quick search on Amazon for "wifi toy" brings up a bunch of flying and rolling toys controlled by android and IOS devices.
The tech is available, but I don't know of a simple off-the-shelf 'plug-n-play' system suited for combat robots. It's still an electronics geek undertaking.
Comment: Hi! I'd just like to chime in on this question.
I was at this competition, and I'd just like to confirm that it wasn't 'plug-n-play' - the builder wrote his own app. I belive that it used bluetooth (although wifi as you suggested probably would have faired him better). When he exited out of the app on his phone the robot immediately stopped, so it passed fail-safe inspection. [Westerville, Ohio]
Response: Thank you for the added info. With the availability of full-featured hobby-grade R/C systems at very reasonable prices, there really isn't any reason to develop your own control system -- except for the challenge and novelty.
I've noticed that some robots run weapons and drivetrains at different voltages. For example, Tombstone runs an Etek-R weapon motor over 50 volts and NPC drive motors under 30 volts. How do these robots provide different voltages to the different motors? Do they have separate batteries, or do they use some sort of voltage regulator?
Thanks, Ian M. [California]
A: [Mark J.] Big combat robots like 'Tombstone' run separate batteries for the weapon system and the drive motors if differing voltages are needed. A voltage regulator capable of providing the current needed for multi-horsepower drive motors would be heavy, bulky, expensive, inefficient, potentially unreliable, and would not reduce the total battery capacity needed to power the robot systems.
Voltage regulators are commonly built in to Electronic Speed Controllers to provide a low-current 5 or 6 volt power supply to power radio receivers, gyros, and other small electronic devices. Larger stand-alone voltage regulators are available that can provide a few amps to power servos for small lifter/clamper applications in insect-class robots. Having only a single battery to charge simplifies between-match procedures.
It's possible to tap into only some of the cells of a multi-cell LiPoly battery via the balance connector to draw intermittent high-amperage at reduced voltage -- but this can cause trouble by imbalancing the charge level between battery cells.
Long time reader/worshiper of the website, first time contacting.
So, first and foremost, my condolences about Aaron. I can't imagine what it must be like to have to go through such a tragedy.
Secondly, on a lighter note, I was wondering if there was a way to rig two controllers to the same receiver. We have a Dx6i controller already, as well as an AR600 receiver already. We were planning to get a pistol grip controller for the drive, and use the dx6i for the weapon. Any advice about which controller/how to rig it up will be exceptionally useful. Thank you so much for all of the information that you have provided already through this website!
-Camden, Captain of Team Xenos [Ohio]
A: [Mark J.] Thank you for your condolences, Camden.
A digital 'spread spectrum' radio receiver like the Spektrum AR600 'binds' to a single R/C transmitter and ignores signals from any other source. A single transmitter can be bound to multiple receivers, but a receiver can bind to only one receiver at a time -- you cannot use a single spread spectrum receiver to process signals from multiple transmitters.
My recommendation: use two receivers with your two transmitters. Bind each receiver to its respective transmitter, then plug your weapon into one receiver and your drive into the other.
A: [Mark J.] I've never seen right-angle servo plugs -- they'd interfere with each other in the tight quarters, wouldn't they? There are receivers with plug connectors in the end rather than the top which helps in tight spaces, but the plugs themselves are all alike.
Suggestion: it's possible to remove the metal connectors from the servo plug (video), shave away some plastic from one side of the plug to allow a gentle wire bend, then re-assemble the plug. I've done this in tight spaces and never had a wire breakage issue.
A: [Mark J.] What exactly is holding it in place? If it has its own compartment, that's great. If it's just wedged in with other components, a good hit can shove it so hard into those other components it can crush them, or shove them into the battery to crush it. Go 'belt and suspenders' and secure EVERYTHING!
You can use zip-ties for hard-cased things like receivers and ESCs, but narrow ties will cut into a squishy LiPoly and/or crush the internal structure on hard impact. Wide straps for the battery, please.
Q: Hi lipo guy again ; ) can i use these Velco battery straps to strap my battery securely to my chassis?
A: I don't know how large your battery is or what mounting opportunities your chassis allows, but you're on the right track to use a 20mm wide strap that will spread the load out and not cut into your soft battery. You can pick up Velcro straps like these at office supply stores -- they're used to bundle computer cables and keep them tidy. The buckles aren't needed and they take up weight and space; just fasten the strap to the chassis and wrap around the battery.
Q: Hi lipo guy again, i use this battery and the space is very tight. i was just wondering, i also use 2 tiny esc and a minimixer from fingertech. can they puncture the batery? or im i ok with the strap only and the other electronic resting on it or near it
A: I like to tie down everything. The tinyESCs and mixer are small enough to mount with squares of foam mounting tape which takes very little room or weight. Good for receiver mounting, too.
Why are you running a mixer? Does your radio transmitter not have mixing options? You can save space and weight if you can switch to transmitter mixing.
If you don't mount everything will something be damaged bu a big spinner hit? I can only say that I'm not willing to take that chance and I don't think you should either.
A: No. Every component should be individually anchored to the chassis:
Q: can i replace the battery i showed u before with this NiMH battery? it is listed as 9gram on other website and since its my first robot.. im a little bit concerned about lipo fire..
A: You should be a little concerned about LiPo fires -- enough to take precautions. Unless a LiPo is crushed, cut, improperly charged, or otherwise abused they're fine.
The NiMH battery you found is a poor choice for your application:
A: [Mark J.] The battery is the problem. On flights in the US you can carry small batteries, including LiPoly, in carry-on bags. Rules in Canada are different. The Canadian Air Transport Security Authority offers specific guidelines for air transport of batteries that vary by the capacity of the battery. The way I read it, insect-sized batteries should be fine in either checked or carry-on bags -- but the website warns:
So, pack your robot as carry-on and you should be fine, or check with your airline about packing in checked baggage.
A: [Mark J.] As much as I enjoy the thought of a combat robot going berserk inside a refrigerator, you need to test your radio in a place where you can see what it's doing. An impact 'clunk' won't tell you if it was running straight and steady or lurched sideways into the door. Try putting your 'bot outside and driving it around while you watch thru a window.
Some radio transmitters have a special function to test reception. Spektrum transmitters call this 'Range Check' but other manufacturers may have a different name for it. This feature reduces transmitter power output to simulate difficult reception conditions. Check your radio manual.
Our Radio Reception Problems in Combat Robots page gives guidance on ensuring good reception and curing problems that do pop up.
If you decide to test the 'bot in your refrigerator, latch the light 'on' and put a video cam in with it. If it goes crazy you'll be the King of YouTube!
A: [Mark J.] Controlling your robot using one channel for steering and one for throttle is done by 'channel mixing'. This is not a special connection of the motor controllers to the receiver, but a programming function in the transmitter usually called 'Elevon Mixing'.
Turning on elevon mixing is specific to your transmitter make and model. Consult your radio manual for instructions on enabling mixing, then refer to How to setup Elevon Mixing for a Combat Robot to complete the set-up. Read the rest of the guide to radio functions while you're there -- you might find other useful advice.
Policy Note: 'Ask Aaron' is
closed to questions from India
and other global locations where robot combat arena safety is dangerously inadequate. I've made an exception in this specific case for my own reasons, but the policy remains in effect.
A: [Mark J.] That's exactly what an Electronic Speed Controller (ESC) does -- it converts the digital output from the R/C receiver to an analog current level, with or without reversing.
To control a lifter it's handy to also have feedback on the position of the lifter. A standard R/C servo has a small ESC, positional feedback, plus a motor and geartrain all built into a single unit. Very handy for insect class lifters.
There are a variety of other R/C interfaces for other specialized purposes.
A: [Mark J.] I appreciate your feedback on the LiPoly FAQ. Adding that charging video is a fine addition. I'll take this opportunity to clear up some misconceptions about LiPolys and Li-Ions:
Q: Thanks for clearing that up for me. I think you've still highlighted an important point worth mentioning: that "raw" batteries for robots need to be treated differently than that of your phone or laptop - it strikes me as an easy (and dangerous) mistake for new builders to make.
A: I think you're right. I'll add a note to the LiPoly FAQ. Thanks!
A: [Mark J.] With two batteries you have a choice:
As long as the batteries are the same voltage and capacity you'll be fine running them either in series or parallel.
A: [Mark J.] So you've got your transmitter mixing all set-up, but when you move the aileron stick to the left the robot spins to the right? Or maybe when you push the elevator stick forward the robot backs up or spins? Yes, I can help you sort that out.
The Team Run Amok Guide to Combat Robot Radio Systems has a special section on How to setup Elevon Mixing for a Combat Robot that will walk you thru correcting problems like these.
You might also be interested in reading thru the Troubleshooting Robot Control Problems section of the Team Run Amok Transmitter Programming Guide. The guide is written for Futaba transmitters, but the control troubleshooting section applies to all brands.
If you have a specific problem you can't sort out, write back and give me the details.
A: [Mark J.] Your weapon motor will not be powered directly from the R/C receiver. The receiver output will instruct either a speed controller or a relay board to do the hard work of controlling the weapon motor. How the weapon system handles power when the lifter at the end of weapon travel depends on the specific device controlling it:
A: [Mark J.] It's concerning that you'd use hot melt glue on something that has the potential to get hot!
It would help if you'd mentioned what the wires are connecting and where you applied the 'insulation'. Common low-temperature hot melt glue starts to soften around 140 degrees farenheit. Some parts of your wiring -- motor connections, for example -- can routinely get MUCH warmer than that.
If you need to apply a coating to insulate an electrical connection that gets hot, pick up a small tube of Silicone sealant at your local hardware or auto store. It's an excellent insulator, easy to apply, and when cured it withstands at least 400 degrees Fahrenheit without complaint.
A: [Mark J.] You bought the wrong solenoid. Manufacturers typically offer a variety of coil voltages for a given solenoid to allow flexibility in the control circuits. There is some tolerance for over/under voltage on the coil, but it's typically +10%, -25%. Check the specification sheet for your specific solenoid.
What you're 'supposed to do' is return the solenoid and get one with the coil rating you want.
If you don't like that option, it is possible to add a power resistor in series with your coil to allow it to operate at voltages higher than its rating. The formula to calculate the resistance needed is:
Example: to safely operate a 24 volt coil with a resistance of 60 ohms at 30 volts requires an additional resistance of:
The power resistor will require a power rating equal to the power consumption of the coil at its rated voltage -- see your contactor documentation.
Q: Mark, I see what you mean, looking at the specs for a White-Rodgers solenoid. My solenoid in question is the Whyachi C1 contactor. The data sheet mentions only a 24 VDC coil and current ratings for 48 VDC for the contacts... not as clear. Any advice on this? Thanks.
A: You have a few options:
A: [Mark J.] Lithium polymer batteries are severely damaged if discharged below about 3 volts per cell, so they are stored and shipped with a partial charge -- typically about half of their rated capacity.
Watch that battery carefully for early signs of damage - like 'puffy' swelling of the wrapping. Discard it if you see problems.
The motor I'm planning to use on my spinning weapon has a stall torque of 285 A, and some calculations on the spinner spreadsheet says my required battery capacity should be in the realm of 2 A-h. The Lipo I have (temporarily) selected has a continuous discharge rate of 275 A and burst discharge of 550A. My main concern is that I am activating this weapon with a relay, not an ESC.
As far as I know, main Lipo failure/fire modes are accidental over-discharge leading to low voltage, being damaged or punctured, and being inappropriately charged. Assuming I'm choosing a battery with plenty of extra capacity for safety factor, and it is thoroughly padded from impacts, would you expect a problem? I'm mostly worried about the millisecond motor stalls experienced during relay activation. The weapon is powered with a belt drive so impacts should not completely stall the motor either.
Thanks for the help! [Sayville, New York]
A: [Mark J.] I think you have a good understanding of the issues and have made a good battery selection for your purpose. Watch the LiPo for any signs of out gassing (a 'puffy' expansion of the battery case caused by gas release) and dispose of the battery if you see such an indication of impending battery failure.
About LiPo protection mode on ESCs: unless strictly required by the event rules, turn the LiPo protection 'OFF' in actual combat. You do NOT want your ESC shutting your robot down when you're winning with 30 seconds left in the match! You can get LiPo sensors that emit a loud warning buzzer when the battery voltage hits the danger zone, giving the driver the option of shutting down to save the battery or continuing to stay in the match. Burn the battery if you need to, just win the fight!
A: [Mark J.] The video is correct. The receiver is powered with five volts from the Battery Eliminator Circuit (BEC) in the motor controller. The receiver output has three leads: power + (red), ground (black or brown), and signal (white or orange). The signal lead carries a pulse coded digital signal that is typically shut off when the receiver loses contact with the transmitter, but the power and ground leads are a simple pass-thru from the five volt power source and are 'on' whenever the motor controllers have power from the battery.
A power indicator light can be fitted anywhere on the far side of the main power switch from the battery, but it is convenient to connect it to the power and ground outputs on an unused receiver port as that provides a constant low voltage suitable for an LED with a small resistor.
A: [Mark J.] In theory, you can power any motor with any type of battery you like. The problem here is that the ME0708 motor can draw an enormous amount of current -- more than 4000 amps at 48 volt stall. LiPoly batteries are subject to damage if they are asked to supply more current than they can safely deliver, so you must either find a LiPoly battery with very great current capacity, or you must use some sort of 'soft start' system to reduce the current draw for the first part of your weapon start-up. Search the Ask Aaron Robot Weapons Archive for 'servo slower' to find a previous post on this topic.
Many builders will choose to equip other battery types (sealed lead acid, nickel metal hydride...) that are not prone to damage from attempting to meet the large current demands of very powerful motors rather than risk damage and possible explosive failure of a large LiPoly battery.
When did the combat robot community make the switch from 75MHz FM controllers to 2.4GHz? [Austin, Texas]
A: [Mark J.] See this post farther down this page.
A: [Mark J.] Why do I think I'm doing your homework for you? You might at least put it in your own words and frame it as a combat robot question.
Please allow me to Google that for you: Ultrasonic Transducer.
A: [Mark J.] Yep, that's how it's done. Your rudder servo will connect to (wait for it...) the rudder channel and you'll be ready to hover away.
A: [Mark J.] With two weapons (not a good idea), each is controlled by a separate R/C channel.
Q: And what is needed to programme weapons, and make the 6 wheel drive work?
A: Many, many posts on weapon and drivetrain control in the archives on these topics. Start with Frequently Asked Questions #19, read the Motors and Controllers archive, scan the Solenoid Control of Robot Weapon and Drive Motors FAQ, and then look thru this archive for any questions you still may have.
Q: And how do you control Mechanum wheels on an RC?
A: It's faster to check the archives before you ask a question -- it's been previously discussed in this archive.
You'll need a Mecanum R/C mixer - there's no 'h' in Mecanum. Note: a Mecanum drive robot has four wheels -- not six.
A: [Mark J.] Let's see, half a meter at the speed of light is about 0.000000003 second. I think you can live with that delay. The signals from the receiver to the ESCs aren't relative time-based anyhow.
I would shorten the r/c leads just to get rid of clutter and weight, but a bit of extra signal wire isn't a performance issue. You'll be fine.
A: [Mark J.] If you have an old transmitter that you particularly like, perhaps because you are comfortable with its features and set-up menus, it is certainly tempting to install a kit to convert it to full 2.4 Ghz spread spectrum functionality. This was once an expensive proposition, and available only for high-end radios that offered replaceable transmitter modules. Now there are quite inexpensive kits that can be installed in nearly any transmitter.
The kits do require a bit of work, some minor case modifications, and soldering skill. The transmitter's antenna is replaced, multiple wires from the conversion board must be soldered to specific spots in the transmitter, and the new 'bind' button must be affixed to an accessible place in the case. Here's a real-time video of a builder converting a Futaba transmitter, and this is the kit used in the video.
For most builders, it will be a better upgrade to simply purchase an inexpensive 2.4 Ghz R/C system. If you decide to convert be sure to verify that the failsafe capability of the new receiver is suitable for use with combat robots.
A: [Mark J.] Several points:
My recommended solution is:
This does add another battery that needs to be charged, but it is the simplest and most reliable set-up. The stall power requirements of the HS-5585 servo are not given in the specs, but I'm guessing at about 5 amps. The receiver requires very little power, perhaps 15 milliamps.
A: [Mark J.] Greetings, Tucson! Good to get a question from my childhood home. How are things in the 'Valley of the Sun'?
We have tools here at 'Ask Aaron' that can estimate battery capacity requirements for drivetrains and weapons:
Assuming a 12" diameter aluminum disc 7mm thick with small impactors (13 pounds) driven by an F30-150 AmpFlow motor at 29.6 volts thru a 4:1 reduction, the spreadsheet estimates the weapon will spin up to a peak 6100 joules of energy in about 4 seconds. Guessing at 6 full spin-ups in a 3-minute match, the current usage for the weapon is predicted to be 1.03 amp-hours. Real world peak current draw at start-up may brush 340 amps. Run the spreadsheet again for your weapon setup if my assumptions aren't close.
One observation: the AmpFlow motor should be OK at 29.6 volts, but I'm concerned about pushing the DeWalt motors that high. Dropping the wheel size would make me feel better about the higher voltage, but most builders run the 18 volt DeWalts closer to 24 volts.
A: [Mark J.] What on earth are you building that requires 21 amp-hours of battery capacity? That's gotta be way too much for a 3 minute match with any robot that might use a Sabertooth 2x60 ESC. Recalculate?
The Sabertooth 2x60 ESC has an absolute max 33.6 voltage limit. You really don't have a choice but to run just two of your LiFePO4 (12.8 volt) batteries in series for your drive motors. You haven't mentioned any robot details, so I can't comment on performance at 24 volts.
Although it's possible to add the third battery 'upstream' from the drive motors to give 36 volts to the weapon motor, it wouldn't help the voltage drop. Bumping the voltage to 36 volts would increase the current draw of the weapon motor by 50% without adding any additional current capacity to the circuit. The voltage drop would actually be larger. Consider just running two batteries.
My question is, is what I am trying to do possible? I have a photo of my wiring diagram [at right]. Can you suggest any changes? The problem I am having is the motors do not seem to spin the right direction. Moving the stick forward makes the left side motors go backwards and the right side go forward. Moving the stick backward does the opposite (the left side motors go forward and the right side goes backward).
I am also confused about the #4 dip switch (the one that controls mixing). Is it necessary to use the #4 dip switch if I plan on using mixing on my transmitter?
Thank you for any help you can provide. I'm a newbie and am now wondering if I got into the wrong hobby! I'm going insane! Bleh!! [The Land of Opportunity]
A: [Mark J.] Getting 'mixing' correct is one of the more difficult things for a newbie to figure out. Yes, it is entirely possible to use two Sabertooth 2x12 ESCs to drive four motors. Your wiring diagram is fine, your DIP switch settings are correct, and you're very close to getting it to work. All you need are a couple of minor programming tweaks to the transmitter.
I'm assuming that in your diagram the two 'M1' motors are on one side of your 'bot and the two 'M2' motors are on the other side. I'm also assuming that you have channel 1 and 2 mixing enabled on your FlySky transmitter. On most transmitters this is called 'Elevon' mixing but the FlySky seems to incorrectly refer to this as 'V-tail' mixing (channels 2 and 4 on other transmitters). This isn't a problem, but it is needlessly confusing. Just one of the annoying things you have to put up with on a cheap Chinese radio...
Here we go. When you move the elevator stick forward the robot spins to the left:
Step 1: Enter the 'Setup' menu on your FlySky transmitter and select the 'Reverse' function. Select Channel 1 and change it from 'Nor' to 'Rev'. Press OK to leave the menu and try the forward command again:
Step 2: Check the turning response. Move the aileron stick a little to the right (spin right command):
That's it! You may need to adjust the V-tail response settings from the default 50% to 100% to get full throttle from the Sabertooth ESCs. See this video on FlySky mixing if you need help with how to do that.
Once you get your 'bot running, you may want to explore some of the other functions on your transmitter that may make the 'bot more comfortable to drive. The Team Run Amok Transmitter Programming Guide will give you some help there. It was written for Futaba transmitters, but the functions covered are similar on most transmitters.
Q: Hi Mark, I am the dual Sabertooth guy running 4 motors guy. aka Mr. Land of Opportunity aka Joe H. Thank you so much for answering my question, when I checked the site and saw you answered, I refreshed the page a couple times to make sure it was really happening!
I made a couple errors (of omittance) by not giving more details of the robot. My sincere apologies for that. Quoting you...
On the diagram I submitted to you, each M1 & M2 represent the sides of the bot (M1 & M2 on left run together, M1 & M2 on right run together). But to clear up any confusion (again, my apologies!) I spent last night making up a diagram that is a little easier on the eyes and more clear. I also clearly labeled the motors this time!
I was using the regular mixing, which was a mistake that led me to contacting you, how confusing! I did a factory reset before trying anything you suggested. When I go into Elevon, it looks like that controls CH1 and CH2. V tail has CH2 and CH4 listed. When I hooked everything back up and ran through the tests you suggested, I was getting some really sporadic results, some of which resulted in the red error light flickering. I decided to call it quits at that point so I didn't damage anything. I tossed my batteries on the charger (thinking that could be a problem if they are low.)
But that makes me wonder if I do actually have this wired incorrectly. I say that because when you said my wiring was correct, you did that with the assumption that both M1s were on one side, and M2s were on the other side.
On page 5 of the Sabertooth 2x12 manual it
says:
I am assuming when they say "only one" they mean "only one Sabertooth" should have the 5v line connected. The image they use as the example in that document is small and bad quality, so it's difficult to see what's going on there. That might explain the sporadic results and the red error light. I will make another attempt to hook everything up after work tonight, and I will report back. Thank you so much for your time and expertise.
A: [Mark J.] The updated diagram helps a lot, Joe. I had to make a few assumptions that turned out to be incorrect. We'll have you running in no time.
Yes, you do have the 'bot wired incorrectly for the way the motors are positioned:
...but let's clear up a couple of other things first:
Mixing: early versions of the FlySky transmitters had problems with mixing and had some of the menu options miss-labeled. It sounds like they've fixed that issue. Yes, Elevon mixing is the correct mix to use if it is now correctly implemented on the FlySky transmitter.
Sabertooth 5v lines: this isn't what's causing your main problem, but running 5 volt feeds from both of the Sabertooth ESCs to the receiver can cause some glitchy behavior. I wanted to fix your main trouble without inundating you with tasks, but since we're already on the topic: disconnect the red receiver pigtail wire from one (and only one) of the Sabertooth ESCs. Fold it back and wrap it with electrical tape. Problem avoided.
Charging the battery: it was a good idea to charge the battery. A low battery can cause all sorts of difficult to diagnose trouble. Nice call.
Now the main fix. We can do this two ways:
Since I don't know how large a pain it would be for you to re-run the motor power wires, I'm going with #2. You've already got plenty of receiver pigtail length to accomplish that fix. If you'd rather implement solution #1 write back and I'll walk you thru that process -- but for now let's just get your 'bot running.
Take a look at the new receiver wiring diagram below:
There is no need to split the channel 1 and channel 2 signal leads and run both signals to both ESCs. The left side ESC will get signal and ground from channel 1 (no 5v connection) and the right side ESC will get signal, ground, and 5v feed from channel 2. Note that the S1 and S2 connections on each ESC are 'jumpered' so that they both get the same signal input.
Prop the 'bot up off its wheels and power it up.
I went thru that pretty fast. If something doesn't make sense just drop me a note.
By now, I have read at least 85% of your forum, which has become like a bible to me. Thank you for this, and for keeping Aaron's dream alive. I'm sure it hurts in an unimaginable way, no parent should ever experience it and it is so easy to give up, but you did not.
What's cool about what you guys have done, combat robotics and robotics in general is the cumulative nature of the learning experience, the more you learn, the more there is to learn and your site is like a never ending stream of fresh info.
I built a 2 wheeler bot with 2 CIM motors with 16:1 P80 gearboxes and 12" wheels, 2 Victor SP speed controllers. This will eventually become a self balancing ride-able scooter for my kids (after I figure out my IMU / Kalman filter issues), but for now I added some casters (kids call them 'training wheels' lol) and it is an R/C experimentation platform to figure out how things work in combat robotics. My kids want a battlebot and I decided to do it, but I'm taking steps and experimenting with some smaller scale stuff, like this 2 wheeler and a 4 wheel hockey bot that's in the works (thanks to the Tentacle calculator, which is an invaluable tool).
I have 2 questions:
Then I apply the D/R & EXPO settings as you recommend in your posts.
For the most part it is very usable, but I can't figure out a way to add flipping/reversing (for driving inverted or with the rear) and there's that diamond shaped throw pattern best described in the IMX-1 mixer's manual:
I drove with and without the IMX-1 and there is a noticeable difference, the IMX-1 algorithm is indeed nicer. But I don't like the lack of fine tuning options, I think doing all the mixing and flipping inside the TX is much more elegant and simple (and less points of failure in combat).
My question is: Will the Futaba T6J allow more control over the mixing compared to the DX6i? Will it allow me to assign a button/switch for inverted mix (inverted/backwards driving)? I looked all over and could not find any info on how to program the 6J for combat. Does your guide for the 6XAP (or the older Battlebots-era guides for the 9C series) apply to the 6J at all?
Sorry for the many words, so many questions to ask... Thank you in advance for your time and for your great service to all the noobs.
Andrei
A: [Mark J.] Thank you for your kind comments about 'Ask Aaron'.
Question #1 has a fairly simple solution, once we find the right component to adjust:
Question #2 [a cluster of three questions] is a little trickier to answer. As you've noticed, the Elevon mixing in the Spectrum transmitters is not optimized for robot use. You've implemented the standard work-around in order to get full-range PWM output. Unfortunately, this fix takes up not only the mix option but also both of the programmable mixes!
Among the reasons I prefer Futaba radio systems is their superior mixing implementation. With a Futaba transmitter you do not need a 'work-around' to get full PWM output, and their mixing does not use the “add and clamp” algorithm -- you have full response all the way out to the far corners of the stick travel, just as you do with the IMX-1 mixer. The 6J transmitter also has 'sub-trims' which allow trim adjustments on individual receiver outputs rather than just on the transmitter stick inputs. This is very handy for adjustments to individual channel outputs after transmitter mixing has taken place: if one motor is a little slow, or if it 'creeps' at neutral.
More good news: programming the Futaba 6J for robot use is nearly identical to programming the Futaba 6XAPs. The menu layout is a little different, and a couple of the function abbreviations have changed, but the Team Run Amok Futaba Programming Guide should walk you thru the 6J with very little trouble.
Now the bad news -- I've never found a method to assign an invert function to a switch on any of the commonly used R/C transmitters. Full-function hobby R/C systems are built for model aircraft, and there isn't an instance where an aircraft needs to reverse the response direction of a channel in flight. Even using the programmable mixes won't get the job done. [Note: Open TX based transmitter like the Taranis Q X7 were not common at the time this answer was written -- invert switches are simple in Open TX.]
My advice: re-calibrate the Victor SPs to work properly with your IMX-1 mixer and continue to use its invert function. You'll need an on-board mixer anyway when you get around to experimenting with piezo gyros.
A: [Mark J.] Assuming:
A potentiometer control, as on a joystick, is typically used as a 'variable voltage divider' to send a variable voltage to your Bluetooth transmitter. A typical potentiometer circuit is shown in the illustration at right.
You need a Single Pole Double Throw (SPDT) switch, also known as an 'on-off-on' or 'center off' switch. A 'momentary' style switch that returns to center when released is desirable. The diagram on the right shows the circuit to replace a 10K ohm potentiometer for simple reverse-off-forward control.
I have bought the iMAX Quattro B6 charger. Although the site states 60W per port, instead it's 50W per port. Soon I'm gonna buy 6S 5000mah LiPos. (Although I'd realistically need about 2000mah worth of battery capacity in a match, I'll just double it to be on the safe side. I read it in the Riobotz Combots Tutorial. Plus 25% reserve for unexpected situations.)
What bothers me is that my charger might take too long to charge my batteries. The manual states: "For 50W charge power, current is regulated accordingly. Eg. 11.1v battery, charge current approx. 4.5A. Eg. 22.2v battery, charge current approx. 2.2A." The current is user selectable but I kinda have a bad feeling that it won't allow me to increase it past 2.2A. That's gonna take >2hrs to fully charge my battery!
Is the charger too puny for my application or will I be fine with it? If the charger is puny, I thought of some alternate ways to make it work:
A: [Mark J.] I know you're asking about your battery charger, but there are a couple of assumptions hidden in your question that I think I'd better address before I get to the charger...
You're worrying way too much about battery power. Your calculations are telling you that you only need 2000 mAh for a full match, you added 25% to that for good measure, and then doubled the whole thing! If you only pull down the charge on a battery pack by 2000 mAh in a match, your charger can top that off in an hour. If you get in a rush, you can easily run two matches back-to-back on a fully charged 5000 mAh pack. You've got enough battery power to run 10 full matches without any charging at all!
Your current charger is fine, and I think five battery packs is overkill. Given that there's a lot of time between matches in the early rounds of a tournament, your current charger with just three 5000 mAh packs should get you thru a tournament just fine.
A: [Mark J.] A substitute for what, exactly?
There is some general confusion about the operation and uses of R/C peizo gyros. Our Gyro Guide answers many of the questions about how and why to use a peizo gyro in a combat robot.
The gyro is mounted on the robot chassis and is connected to the R/C receiver. It monitors the turning motion of the robot and compares it to the turning signal output from the receiver. If the turning motion differs from the turning signal from the receiver, the gyro adjusts the turning signal to correct for the difference before passing it on to the motor controllers.
Mounting the gyro to a wheel would only let it monitor the rate at which the wheel was rotating, not if the robot was turning at the rate the radio was commanding. It would also make it hard to wire the gyro to the receiver and motor controllers!
I would like to use the left vertical axis for controlling both the motors together (like the bot going straight and reverse) and the right stick for steering. I will definitely need a inverting function 'coz my bot will be invertible. I also have a weapon to control.
There is also one more confusion. As in bang control, we can make two types of turns:
I understand how we can achieve the 360 turn by just operating the steering throttle, and
smooth turns by using combination of both the throttle and steering sticks, but how will I be able to make a half turn?
And also, can we get ready-made transmitters with the left vertical control axis already positioned to self-center? If not which transmitter should I buy so that I can get parts easily for that modification? Please help me out as I am buying a transmitter for the first time and I dont want to make mistakes.
Also can you explain the modes, the control which I want comes in which kind of mode? Will I require a mode switching?
Thank you SOOOO much! [India]
A: [Mark J.] Lots of questions -- but that's why I'm here.
Your control preferences are entirely normal for combat robots and can be met by just about any full-function 6 channel radio system.
Once you get used to proportional control of your robot you won't need to worry about the type of maneuvers you had to resort to with your 'Bang Bang' system. If you really need a 'half turn' it can be accomplished by combining equal amounts of throttle and turn input. The turn input will command one motor forward and one motor backward, and the throttle input will balance out the backward motor command with an equal forward command leaving that motor motionless.
A: [Mark J.] Unless you have a VERY strong personal preference for pistol-grip style transmitters there is no reason to consider their use for a combat robot. Pistol grip transmitters in general do not have the Transmitter Functions needed to properly and safely control a combat robot, and the few that do are quite expensive. Read thru our Radio Guides to learn about radio selection and programming, and purchase a full-featured twin-stick style radio system.
If absolutely necessary a pistol grip transmitter can be used to control a skid-steer robot by using the channel mixing function found on many speed controllers. Channel mixing takes the output from the transmitter throttle channel and splits it between the two motor control channels of the controller to direct them both forward/reverse as needed. The transmitter steering output is likewise split between the two motor control channels to provide differential power to the motors on either side of the 'bot for turning. But seriously, you don't want to use a pistol-grip transmitter for your combat robot.
A: [Mark J.] I VERY STRONGLY recommend that you NOT attempt to build your own radio control for a combat robot. Commercial radio systems are rugged, reliable, loaded with features, and inexpensive. You aren't going to achieve any of those attributes by building your own system. Even a $25 Chinese R/C system would be far preferable to a home-brew radio. Don't do it!
A: [Mark J.] February 3rd, 2008 at 10:24 AM pacific standard time.
Q: that's very specific.
A: That's when RoboGames decided that tracking transmitter frequency crystals was too much bother and mandated spread-spectrum radios for their combat events. The 2.4 gHz radios would have taken over eventually, but RoboGames pushed the issue.
About that same time RoboGames also decided that the single most popular large combat class - Hobbyweight robots - was too much bother and dropped it. Superheavys and Feathers followed. Power corrupts.
A: [Mark J.] If you're in need of urgent guidance you would be well advised to search the FAQ and the Ask Aaron archives to see if your question has been previously answered rather than wait for me to get back to you. In this case, it has been discussed and answered in great detail.
A: [Mark J.] Scroll down to the next post for an answer to battery capacity required for a 3kg sumo robot powered by RS-550 motors. The 5000mah battery you found has at least five times the capacity you need for a sumo match. To give a more precise answer I would need to know the motor gearing and wheel diameter of your robot.
Advice: since you don't need a battery this large, spend some of the money you're saving to buy a better quality Lipo -- something from a different distributor.
I am using a duratrax 550 motor to drive a 3 kg robot 6WD. The motor will be geared 21:1 and the wheel size is 36mm in diameter. I am having trouble with the selection of the correct battery (lipo?) for it. Would appreciate it if i am given some advice on this matter. Many thanks [Singapore]
A: [Mark J.] A single Duratrax 550 motor? I'm going to assume two motors, as one motor would be an odd design for a 6 wheel drive robot. I'm also going to assume this robot will compete in the 3kg sumo division.
Two RS-550 motors is a whole lot of power for a 3kg robot. Acceleration performance will be excellent, and the motors will be very lightly loaded so they won't consume much power. The Tentacle Torque/Amp Calculator says the motors will consume only a bit over 5 amps total under heavy pushing before the wheels break traction and limit greater current flow. Total power consumption for a three minute long match (very rare in sumo) would be about 300 mAh. Any small three-cell LiPoly pack with 400 or more mAh capacity should be fine for your purpose.
A: [Mark J.] Weapons give the opportunity to deal damage if you can apply them to your opponent, and your motorized drivetrain gives the ability to to move toward your opponent -- but the it's the interface between the driver and the machine that allows the robot to be responsive and well controlled. We get very few questions about tweaking the control interface to make the robot drivable.
I see plenty of examples of combat robots with poorly set-up transmitters. Machines that wander about like lost sheep -- unable to reliably point their nose at their opponent, incapable of driving across the arena in a straight line, and spinning around uselessly when attempting a simple turn. Many builders don't even know what functions are available on their transmitters that might be useful to them.
If you're interested in using the full capability of your computerized transmitter or want to know which radio system to buy in the first place, Team Run Amok has a few guides on the subject:
A: [Mark J.] Read thru the next six or eight posts in this archive. In those posts you will find links to:
Update: I put a single reference to all of the Run Amok radio guides in Frequently Asked Questions #20.
A: [Mark J.] If all you're powering at 5 volts is your receiver, you can certainly stop by Radio Shack and buy yourself a 7805 linear voltage regulator IC and wire it as shown in the diagram to power your receiver. The capacitors (35 volt rated) are optional, but will give cleaner power to your receiver.
So why don't R/C guys do this? Linear voltage regulators are inefficient. They waste a lot of power to do the job and lose capacity as the input voltage rises. That makes them a poor choice if you have multiple servos plus your receiver drawing power.
A 'dedicated BEC of reasonable quality' like you are trying to avoid buying is a switching power regulator. More complex but more efficient, a switching regulator also doesn't lose capacity at increased voltage inputs. Take your pick.
A: [Mark J.] The Spektrum AR6210 manual provides advice on mounting and orientation of the main and remote receivers (yes, a two-piece receiver). Keep the receiver away from electrically 'noisy' devices like the ESC and motors, and don't tape the wire antennas down directly to the aluminum -- space them up on a foam strip. As long as the receivers aren't enclosed on all sides by conductive material (metal, carbon fiber...) you'll get a good signal.
A: [Mark J.] The simple way is to use a standard R/C radio system. See: How R/C Radios Work.
If you're looking to wirelessly control with Arduino, try this tutorial: Wireless Servo Control.
A web search for "wireless servo controller" will give you other options.
A: [Mark J.] Have a look at my Combat Robot Radio Function Guide. A typical combat robot will only use three channels, but you'll probably want a five or six channel radio for the useful extra features that come with them. The guide will help you sort thru the many available features to pick out the right radio system.
A: [Mark J.] That was a common control problem, and it still is. A high-power ramming 'bot will wildly spin its wheels all the way across the arena and can be difficult to keep pointed in a straight line, let alone make fine turning control motions. A peizo gyro can help with the straight line issue, but properly modulating power for a controlled turn under full throttle is pretty much beyond the physics of the situation. You really can't do much more than point, pull the trigger, and hope.
A: [Mark J.] See Frequently Asked Questions #19. Your 'bot won't have a 'Weapon ESC' or 'Weapon Motor', but everything else is correct.
For R/C transmitter programming help, see the Run Amok R/C Transmitter Programming Guide.
Q: How to make a non weapon simple 4 side wedge robot with non wire less rimot control ?
A: I've never built a non-wireless combat 'bot, and I don't know what the Indian rules allow. Other Indian builders would have experience with wired remotes, so I suggest asking for guidance at the 'Combat Robotics India' Facebook page.
'Combat Robotics India' is a closed group that requires an invitation to join. If you need an invitation, write back to me with your Facebook account name and I'll invite you.
A: [Mark J.] Do NOT attempt to use a 'puffy' lithium battery. Do NOT even attempt to recharge a 'puffy' lithium battery. It's dangerous!
Lithium batteries are susceptible to damage from excessive current draw or excessive discharge. When damaged, the battery releases hydrogen gas that inflates the battery covering and causes it to puff outward. A puffy lithium battery has reduced capacity and is in danger of bursting into flame with continued use. It should be properly disposed of immediately.
A good tech inspection at any combat event should always examine lithium batteries for signs of damage and should immediately refuse entry of a 'bot using such a battery -- no exceptions. Why be so cautious about damaged lithium batteries? Here's what happens when a LiPoly ignites.
I am building an antweight with a Sabertooth 5xRC, Spektrum 4 channel receiver (AR400 I believe), and I am controlling it with a DX6i. I have Delta mixing turned on in the TX with dual rate on and the Aileron rate set fairly low (~25%). For the most part, it handles really well, but when I take it to full speed I find that the turning is too responsive. If I turn the aileron rate down any lower, turning becomes sluggish at low speeds.
Is there any way to make the robot turn slower at high speed without slowing down the turning response at lower speeds?
Thank you, Kit Buckley [USA]
A: [Mark J.] Hi, Kit.
That's a fairly common handling problem, and there are a few things to try. Different drivers like different solutions, so you may want to try them all - individually and in combination - to see what works best for you.
Write back if you need clarification on my recommendations -- I went thru them pretty fast.
A: [Mark J.] Lead acid batteries are very old technology. Given the list of things you want:
That said, even a small lead acid motorcycle battery is capable of providing much more than the one amp-hour of current that your weapon requires. If you aren't getting a full match worth of power from your battery, I would suspect that your battery and/or charger is faulty.
Q: I'm planning to use motorcycle battery (Lead-Acid) which has an rating of 12 Volts 35 Ampere-hour, can that battery discharge a burst current of 200 Amps which my weapon motor requires? If Not, which batteries can supply me that amount of Amps ?
A: First, your weapon motor does not require 200 amps. It can use up to 200 amps at stall to produce maximum torque, but if that much amperage is not available it will cope with the current it can get. In a typical spinner application, the weapon motor will only pull very high amps for an instant at start-up. Amperage consumption will drop rapidly with increasing weapon speed and will level off at just a few amps at max RPM.
A battery that can supply full stall amperage to the weapon motor will shorten your spin-up time by a bit, but isn't required from lead-acid batteries that are not sensitive to high drain rates. Some newer battery types (E.G. - lithium) can be damaged by high current draws and must be carefully selected to avoid trouble.
To your question: the maximum burst current of lead-acid batteries varies greatly with the style and quality of manufacture. I suspect your 35 amp-hour cycle battery likely can deliver 200 burst amps, but you would need to check with the manufacturer to make sure. I think you'll probably be fine using this battery, but a properly selected Lithium Polymer battery could supply your weapon with ample power and burst amperage at a fraction of the weight of your lead-acid battery.
You are using two of the lead-acid batteries to power your 24-volt motor, right?
The 'Ask Aaron' project was important to Aaron, and I have decided to continue the site in his memory. Thank you for the many kind messages of sympathy and support that have found their way to me.
- Mark Joerger, Team Run Amok
A: These are VERY basic questions. You'd be well advised to find a book on robot construction to gain a base understanding of robot design and operation.
A robot that maneuvers by 'differential steering' turns by powering the wheels on one side of the robot at a different speed or in a different direction than the wheels on the other side. A small difference in speed will give a gentle turn, while greater speed difference will make for a sharper turn. If the wheels are spinning in different directions, the robot will rotate in place.
You can use any or all of the proportional channels on an R/C system for throttle control. Just because a channel is labeled 'aileron' or 'elevator' doesn't mean you can't use it for a throttle; the type of output from the receiver is the same for all of the proportional channels. Most robot drivers use 'channel mixing' to control the two drivetrain throttles -- see the Team Run Amok Radio Feature Guide for details on mixing and for help in selecting other radio features you will need.
Q: i am asking about two throttle sticks on one remote to control the speed of two different wheels?????though by connecting it to other channels i can control it but not to much extent
A: That's the way almost all combat robots are controlled -- two channels controlling opposite sides of the robot drive train.
Using one stick for each side of the robot is sometimes called 'tank steer' because of its similarity to the way armored tanks were once driven with two control sticks. Assigning the left transmitter stick (usually channel 3 - throttle) to the left side speed controller in the 'bot, and the right transmitter stick (usually channel 2 - elevator) to the right side speed controller will provide you with basic tank steer control of the robot. Push both sticks up to go forward, both sticks down to reverse, and sticks in opposite directions to spin in place.
Most drivers prefer to use special features available on many R/C systems to 'mix' two stick channels for better control. The popular 'mix' is known as 'elevon mixing' where channel 1 (aileron) and channel 2 (elevator) are electronically combined so that moving just the elevator stick up/down controls both sides of the robot to move forward/reverse, while moving the aileron stick left/right will alter the speed of the two sides of the drivetrain to turn the robot left/right. This control style is more natural, and movement of the two sticks can be coordinated for smooth turns and precise control.
More information on mixing is available in the link I gave above to the Team Run Amok Radio Feature Guide.
Given that you have told me nothing about your radio, speed controllers, robot design, or the specific control problems you are having, I really can't give further advice.
Robot haiku:
A: There is no on-line manual for this switch, and the instructions given on the web page are very sketchy. Since the power light is on and the status light blinks when you switch on channel 3, it sounds like the R/C link is correct and the switch is receiving the proper command from the receiver. So far so good.
The web page does warn that the R/C transmitter MUST be turned on before the Whiplash Switch is powered up. The reason is unspecified, but it may be some sort of fail-safe function. Make certain that you follow the proscribed start sequence.
That's all I can think of. I'd suggest contacting the manufacturer if you still have trouble. Note that 30 amps is not a lot of capacity for a weapon switch. You haven't given me details of your weapon but, in spite of what the product webpage says, a large weapon motor can very easily overload and destroy a 30 amp relay.
Robot haiku:
A: Ask Aaron provides access to tools that allow you to estimate battery capacity requirements.
Robot haiku:
thnks Aaron =) [Melaka, Malaysia]
A: [Mark J.] "C" refers to the maximum safe continuous amperage discharge rate for the lipo battery. A '20C' battery with 1500 mAh capacity can safely provide a continuous current of 20 times 1500 milliamps = 30,000 milliamps = 30 amps. Discharging at a higher rate may permanently damage the battery and create a fire hazard.
The mAh rating refers to the total amount of current the battery can provide before it goes 'dead'. A 1500 mAh battery can provide 150 milliamps of current for 10 hours.
A: [Mark J.] I'm getting a lot of battery capacity questions lately, and this is not the first time Ask Aaron has answered this question for you. The tools you need to answer this type of question are available here at Ask Aaron. We supply the tools -- you do the calculations:
In general I can estimate that a 6000 joule weapon spinning up 4 times in a 3 minute match might use somewhere around 0.75 amp hours of current at 24 volts. That would put your recommended battery capacity (including a 20% reserve) at just under 7.5 amp-hours. I would STRONGLY suggest that you run thru these numbers yourself after you sort out the weapon calculations.
I have chosen this power supply. Will it suffice my need for charging something which exceeds 14V?? Please explain.
Oh and btw I'm not from Las Vegas, Nevada, I'm from mumbai Maharashtra. There seems to be some problem with your tracking system. [Las Vegas, Nevada]
A: [Mark J.] Hobby battery chargers routinely have voltage step-up capability so that they can operate from an automotive 12 volt battery 'in the field'. Pop the hood on your car, connect to the battery, and charge up your R/C plane/copter/buggy/boat. If the charger you have chosen says it can charge a 6 cell LiPo on 16 amps @ 14 volts you should be fine with the power supply you have selected.
So you claim you're from Mumbai, do you? Then why do you type with a Nevada accent? Nice try, but I can hear the slot machine jackpots going off in the background.
I have a confusion of buying a Lipo and want to know which battery should i opt for- should i use a 6S 5000mAh 65C-130C battery or a 6S 5000mAh 45C-90C battery. Which one will be efficient considering the cost too? [Mumbai, India]
A: [Mark J.] You've given me too little information to answer your questions.
The amount of energy storage in a spinning weapon depends on:
As to your battery selection: the 5000mAh capacity you propose is MUCH larger than just your weapon might use -- I assume you will use it to power the robot drivetrain as well. You have given me no information about your drivetrain, so I cannot comment on the overall suitability of the battery.
A: Jamming? Please tell me that intentional radio jamming is not allowed in the competition!
If you are genuinely worried about intentional signal interference, your radio of choice would be a DSMX based radio system such as the Spektrum DX5e. All 2.4 GHz DSM R/C systems are resistant to interference, but the DSMX systems can switch to alternate frequencies if they encounter interference on the frequencies they selected at start-up. Radios employing the DMSX protocol are effectively immune from narrow-band jamming.
An alternate frequency switching protocol called FHSS is offered on some Futaba radios. FHSS provides similar security from interference.
Check with the event rules to assure that the failsafe behavior of a specific radio system meets the event requirements before you purchase!
You may also be interested in reading thru our Radio Function Guide for help selecting a radio with the features best suited to your needs.
Robot haiku:
A: We have a page devoted to Radio Reception Problems in Combat Robots.
Robot haiku:
There is a question that specifically asks about bypassing the battery eliminator circuit to run a lifter servo at full battery voltage -- search this archive for 'compact antweight lifter'. The diagram from that question is shown at right.
Mark J. here: for more radical overvolting beyond the normal capacity of the servo controller board, take a look at the servo hacks detailed on the Team Kiss website.
Robot haiku:
A: A fine group of friends! Drag out the manuals for the ESC and radio and wade thru the set-up process again. This time, get a notebook and write down all of your switch settings and transmitter programming to avoid future problems like this. Documenting your 'bot can be a life saver.
Robot haiku:
People commonly have four wheeled robots with four motors, each with its own ESC (I think). However, on a six channel receiver (or any I would think) there is only one channel port for the left and one for the right. This would mean that in a four wheeled robot, the ESCs have a "Y" connector of sorts to all left ESCs to get the signal from channel one and likewise for the right? I hope the Hamburger is good here.
Thank you,
A: There are several ways to handle a four-motor robot, New York.
Robot haiku:
Q: Aaron, are you certain that the Y adaptor you included in the link above is the correct one? I would think it should be two female to one male. I am having trouble finding one that is in this version, and I do not think RMP makes one.
Thanks, New York
A: The Y-adaptor link is correct. RMP botched the description, but the photo is right. Male/female correctly refers to the shape of the actual electrical connectors, NOT the shape of the insulators -- but some hobby R/C sources confuse this and get it wrong.
The metal pins in a receiver port are recessed 'male' connectors. The single female connector - with metal ports to accept the pins - plugs into the receiver, and the twin recessed male connectors on the other end of the cable are available for the ESC female plugs. I don't think anyone makes the type with opposite gender connectors -- there's no application for it.
If you are concerned, support your local hobby shop and buy one there that you can examine.
Robot haiku:
A: Repeat after me -- 'Cheap' and 'Best' don't go together!
Modern computerized radio control systems have a wide range of functions that can make the difference between an uncontrollable beast of a robot and a robot with precise and predictable behavior. Some functions and attributes are required by combat regulation, so check carefully with the event(s) you plan to enter for special requirements to make sure you get what you need.
Go take a look at our guide to 'Combat Robot Radio Systems - what functions do you actually need?' It lists common R/C functions of value to combat robots and ranks them by importance. You'll at least know what you may have to give up if you go with a cheap radio. There are also many posts on radio gear selection elsewhere in this archive.
If you really have to go cheap on your radio gear, stick with a radio that is being used by other combat builders so you have a base of users to ask for help if you run into trouble. Currently, the popular cheap full-featured system is the HobbyKing Orange T-SIX transmitter and the OrangeRx R620 receiver. Read our comments on Orange R/C gear before you decide to go with this radio.
The radio gear does not care what type of motors (brushed/brushless) you run -- motor control is the job of the Electronic Speed Controller (ESC). An ESC is a separate device that plugs into the radio receiver. Many posts about ESC selection are in the archive.
Q: Thanks for helping me in deciding radio control .I'm new to this r.c department so I decided to go for cheap one and In hobby king website I found turnigy,hobby king and orange rcs out of these three which is best for the begginers and easily programmable
A: Mark J. here: being 'new' to R/C is an awful reason to go 'for a cheap one'. To the contrary, it is experienced users who have the knowledge required to sort thru the poor user manuals and difficult programing procedures that come with cheap radio gear -- a beginner will be best rewarded by the features of a better radio.
A quick scan of the HK site shows 11 Turnigy, 6 Hobby King, and 2 Orange transmitter models -- each quite different and most with multiple receiver options. I don't have time to review each combination for you, and I don't know the specific radio requirements for your event. I can repeat the advice Aaron gave above: the popular HobbyKing option amongst combat robot builders is the Orange T-SIX transmitter with the Orange R620 receiver. This is a full-featured radio that should meet the requirements of any robot combat event.
Personally, I don't consider any of the HK 'house brand' radios to be either good for beginners or easy to set-up. The user manuals are truely horrible, quality control is poor, and programming can be very frustrating.
My suggestions:
Robot haiku:
A: You might benefit from reading this post on RCGroups.com. If that doesn't help, your closest support center is Horizon Hobby Limited in the UK:
Robot haiku:
I also notice that it pulls right a little bit when it's supposed to go straight. Could you recommend anything to help me balance the wheels out? Thank you.
A: Mark J. here: overvolted RS-775's in a 15 pound pusher? That's somewhere close to two horsepower! I would guess that it does accelerate 'incredibly quickly'. Fortunately, your Spektrum transmitter offers some features that will help tame an overpowered beast like you've built.
I'm going to assume that you have the DX6i transmitter set-up for elevon mixing. If not, write back.
That should get you back in control of the beast. You can play with the values if it doesn't test to your liking.
Getting the 'bot to track straight is a different type of problem. The RS-775s spin a little faster in one direction than the other, and that translates into a pull to one side. Some radios have receiver-level 'Adjustable Travel Volume' (ATV) adjustment that can dial that out, but Spektrum transmitters don't have that feature. If it really bothers you, read thru our Guide to Combat Robot Gyros for a possible solution.
Robot haiku:
A: Everything was fine 'til you replaced the receiver battery and re-bound the receiver, and now neither of the 883s have signal? OK, let's start there:
Robot haiku:
Q: Radio problems guy again!
Have you ever had this problem? Is it possible to blow a driver cable? My receiver battery is 6V. What else can I do? Thanks
A: It's very possible to blow an IFI signal booster cable, but I didn't think it was likely that you blew both of them at once -- until you mentioned the 6 volt receiver battery...
Under that black plastic wrap is a Fairchild MM74HCT14 chip that has a max input voltage of 5.5 volts. A nice fresh charge on your 6 volt receiver battery has it up around 6.5 volts. Yea, you blew the PWM boosters.
Robot haiku:
A: First thing to check is the radio rules for the event you will be entering. A 30-pound robot will a spinning weapon generally requires an R/C system that will 'fail safe' and shut off all power to the weapon and drive train when the radio signal is lost -- something your GWS radio does not do. Some events may also require more advanced 'spread spectrum' 2.4 gHz radios to avoid radio interference. Check with the organizers before you continue with your current radio.
Your radio receiver cannot directly control your drive and weapon motors. The output from your receiver is a very low power pulse-coded signal that must be interpreted by an Electronic Speed Controller (ESC) that will handle the high-power demands of your motors. You will need an ESC for each motor you want to independently control. Servos that plug directly into the receiver have a built-in low-power ESC as part of their circuitry.
Which ESC to use depends on the voltage and power consumption requirements of the motors you select. See
#21. There are many posts in the and archives about ESC selection that will get you started. You'll probably be interested in reading our Optimum Robot Drivetrains Gearing Guide as well.
Robot haiku:
Q: Hi Aaron, thanks for responding so quickly, thankfully my card was declined before the unfit receiver and controller was processed. Instead i will be ordering the Tactic TTX404 2.4GHz 4-channel radio system with a Tactic TR624 6 channel 2.4 GHz receiver along with the sabertooth RC dual motor speed controller. the motors i have are ungeared similar to the small johnson motors with speed of 18720 rpm at 12v. Did not finalize order yet but this is where my group and i stand right now. Would like to know your opinion on the matter before we process everything.
A: You're getting closer.
The Tactic TTX404 radio [manual] does not provide an adequate fail-safe response on loss of signal. Your robot drivetrain and weapon must both stop under these conditions, but the TTX404 will only return channel 3 to an 'off' condition on signal loss. The other channels will 'freeze' in the positions they were in just before signal loss -- and that could be at full throttle! This does not comply with the fail-safe provisions of the rules and is not allowed for robots of your weight class and weapon type. Suggest you read thru this archive for guidance in selecting a suitable radio system. Something like the 'Spektrum DX5e' transmitter paired with the 'Spektrum AR6115e' receiver might be a reasonable low-budget choice.
I can't really comment on unspecified motors 'similar to' the Small Johnson motor. If you were using the actual Small Johnson, it would be suitable for use in a 30-pound robot if geared down about 25:1 with 3" diameter wheels. How do you plan to gear down the motors? You can't use them to directly drive your wheels!
The motors, geared down as specified, would be expected to break tire traction and pull around 15 to 20 amps each when pushing against an imoveable object at full throttle. If your Sabertooth Controller is the 'Dual 25 amp' model you should be OK.
Mark J. here: Spektrum radios are popular in the robot community, but Team Run Amok has always used Futaba radio systems. The Futaba 6J six-channel 2.4 gHz system is my current favorite radio system for combat robots. The transmitter is full featured, set-up is simple and intuitive, the receiver will fail-safe to user-determined positions on all channels, construction quality is excellent, the manual is well written and clear, and the receiver is pre-linked (bound) to the transmitter. Current pricing is less than a comparable 6-channel Spektrum system, which makes the 6J a bargain. A good radio can make a big difference in the driveability and operation of a combat robot. If you have a few extra dollars in your budget, spend it on a radio that won't frustrate you.
Robot haiku:
A: Mark J. here: it's possible to get both a little more voltage and capacity out of most types of rechargeable batteries by using destructive charging techniques, but it involves more than simple 'overcharging'. The gain is quite small, and it trashes the battery immediately -- the pack will lose significant capacity on the next charge cycle. R/C racers have known about this for a long time, and factory sponsored teams routinely did this on NiCad and NiMH packs for the small advantage it gave them.
My advice: stay safe. NEVER overcharge any type of lithium battery!
Robot haiku:
I'm even more concerned about my weapon motor which may draw current much higher, during startup.. in excess of 100A. Again, the motor is outfitted with 12AWG. I don't want to solder on thicker wire if I don't have to.. how concerned should I be?
Thanks
A: Mark J. here: there are many different power ratings for wire that vary according to the planned use. Greater current flow adds up to higher operating temperature, and it is that temperature that impacts the safety factor and amp rating. You don't want a wire bundle heating up to dangerous levels in the wall of your home!
AWG 12 gauge copper wire has a resistance of only 0.0016 ohm per foot of length, so it is not going to significantly restrict your motor's current draw. It's possible to draw 235 amps through 12 guage copper for about 10 seconds before the wire itself starts to melt, but the insulation will burn away a bit quicker than that.
I think you'll be fine with the 12 gauge, but I could be more certain of that if you had mentioned the actual motors you'll be using.
Note: the rated 'discharge rate' of a lithium battery is NOT the maximum amperage it can provide; it is the maximum amperage it can provide safely. If placed in an environment where the battery is asked to provide more than the rated amperage it will do so and will overheat and damage itself. In extreme cases the battery may catch fire. If your lithium battery is rated for a maximum 70 amp discharge, it is suitable ONLY for applications where the maximum amperage draw does not exceed that value for any significant time.
Robot haiku:
Q: Hey Mark-
Forgot to add: the 24v packs are NiMH, not lithium.
A: Is this for a 120-pound middleweight? Running some calculations on the AmpFlow motors and the amperage draw you expect works out most reasonably with a middleweight: break traction at 45 amps with a 5:1 gear reduction and 3" wheels. If I'm correct about the weight class, you might consider a bit greater gear reduction to decrease the maximum current draw and give better acceleration. The gearing isn't bad, but top speed is of no use if you can't reach it in the confines of the arena.
I think you're fine with the 12 AWG wire. Run a few stress tests when the robot is complete and inspect the wires for signs of overheating. I suspect that the battery pack and/or the motor controllers will be the amp-limiting elements in your power circuit.
Robot haiku:
A: In general, we aren't fans of Hobby King products for robot combat. There are reasons why their products are inexpensive, and those reasons don't match well with combat robots that place a lot of stress on components. Magnets come unstuck in their motors, unhardened shafts bend under stress, and an impact can scramble their electronics. Quality control appears to be a major problem -- read thru the comments section on their products pages. Maybe you get a 'good one' and maybe you don't.
Download the user manual for the Orange radio and give it a good read. Can you make sense of the poor translation from chinese? Does the manual answer critical questions like "Does this radio fail-safe?", "On which channels?", and "How?" [hint - the manual says nothing at all about fail-safe]. The compatable Orange 620 receiver claims full failsafe response, but good luck reading the manual to find out how -- plus the 620 receivers tend to be out of stock.
There are posts in this archive about selecting an appropriate radio for your robot. If you've used both cheap and quality radio equipment you'll understand why we avoid cheap. My advice is to pay a little more and avoid the problems that come with cheap components. Save a few bucks and you may go home early from the tournament.
Q: RE: Hobby King 2.4 GHz tx: FYI, Pete Smith just did a review of the HK Orange Tx in the March issue of Servo Magazine. He mentioned the manual was confusing, but the menus on the tx itself were pretty straightforward and it failsafes properly. I've had no issues using the Orange Rx's in my robots. In addition, even the "trusted" brands such as Spektrum aren't very good about documenting their receiver's failsafe behavior. In fact, there can be different bind methods to get different behavior depending on how you want the failsafes set.
I'm all for quality parts, but just because something is cheap doesn't mean it is of poor quality and just because something is expensive doesn't mean it is of good quality. Always, always test the crap out of any component, cheap or expensive, to be sure it will handle the abuse. [Columbus, Ohio]
A: Mark J. here: pay your money and you take your choice. Here are my thoughts:
The Fail Safe function is recommended to use for safety reasons in the event of radio interference. In this menu, you mayselect from one of two options. The “NOR”(normal) setting holds the servo in its last commanded position, while the “F/S”(Fail Safe) function moves the servo to a predetermined position. The setting is set to “F/S” as a default.
To set the Fail Safe Function:
1. Enter the programming mode. Access the “F/S” screen with the MODE key.
2. Press DATA Input lever downward when you need to set Fail Safe. The arrow moves to “F/S” side. This means that the F/S function is activated. Then move the throttle stick to the position where you want the servo to move when “F/S” function works and press DATAINPUT lever downward for about two seconds. A figure in percentage will be shown with a beeping sound. Press DATA INPUT lever upward if you want to set “NOR”. The arrow moves to “NOR” side and then the “NOR” function is selected. The F/S value is set to 20% of the full throttle for “F/S” function as a default.
3. Verify if the F/S function has been correctly set. Turn off the transmitter, then check if the throttle servo moves to the position that you set.
That's complete, accurate, and a whole lot better than saying absolutely nothing intelligable in a broken chinese translation. Team Run Amok has always used Futaba radios; their documentation and reliability are primary elements in that choice.
A: A Battery Eliminator Circuit (BEC) takes the full battery voltage from the main battery pack, reduces that voltage to 5 volts, and feeds that voltage to the radio receiver. This eliminates the need for a separate dedicated battery pack for the receiver.
The BEC is typically incorporated into the Electronic Speed Controller (ESC), as that device is connected to both the main battery pack and the receiver. Since the receiver is not typically connected directly to the main battery pack, a 'BEC receiver' does not make much sense -- but the Traxxas 2015 manual does claim that the receiver has a BEC. Puzzling!
The manual also claims that Traxxas ESCs have a BEC. As long as your ESC has a BEC, any receiver you choose will have the power to operate correctly.
A: Each tinyESC has a battery eliminator circuit (BEC) that provides 5 volts DC to power to the R/C receiver thru the red wire of the yellow/red/brown flat cable from the ESC to the receiver. If you have two tinyESCs both attempting to power the same receiver there will be a feedback problem that will cause one ESC (sometimes both) to malfunction. This may very well be causing your problem.
Pull the red pin out of one of the plugs from an ESC to the receiver and tape it back out of the way. The pin is still electrically 'hot', so insulate it. [Note: recent versions of the tinyESC include a diode that allows both red wires to remain in place.]
Q: I am the two ESC guy. My right motor continues to spin no matter what I do on the transmitter. So I was wondering if not removing the extra BEC wire could cause some permanent damage?
A: Highly unlikely. The problem may be with the radio, or it may simply be a bad ESC. Try swapping the receiver ports that the ESCs are plugged into:
A: Yes, but there are several drawbacks.
A: First, check the rules for your competition. There may be restrictions that require specific safety features for SLA batteries. Two 5 AH batteries in series should be more than adequate for an E30-150 weapon motor.
Sealed Lead Acid (SLA) batteries were very common in early combat robots, and they have many desireable properties. They can be charged with an inexpensive 'dumb' charger, are inexpensive, and are not damaged by high discharge rates. Their major drawback is that they are bulky and heavy for their output capacity.
A: So, your 'bot will spin left/right but won't run forward/reverse? It certainly could be the receiver, but let's check out a few other things too. I recall that you are running a Sabertooth ESC, and I'm assuming that you're using the Sabertooth's channel mixing.
Q: I went down the check list of tests that you gave and nothing produced any response from the forward/reverse channel of the motor controller. I checked the DIP switches on the ESC to make sure none of them got bumped. I unplugged the 'Channel 2' (left/right) lead from the receiver and plugged the 'Channel 1' (forward/reverse) lead into the other port I had 'Channel 2' plugged into. I powered up and gave him some left/right input from the transmitter. nothing. I then gave forward/reverse input and my robot decided to try a new career as a thwak bot. I checked my transmitter to make certain that it is on the correct model memory and I confirmed that transmitter mixing is turned off.
I checked the solder joints for the wire to the board as well. I'm starting to think that something might have gone wrong with the board. The board's failsafe function doesn't seem to want to work either, which is why I made the change in receiver. I have a spare, but I am thinking of switching to a different brand eventually as this is not the first bot I've built that had one fail.
A: Mark J. here: OK, no panic. It sounds like the ESC is the problem, but the trouble could be entirely in the mixing section. Try switching over to transmitter mixing:
If no joy, scrap the ESC and go with a back-up plan. Best luck!
A: A microcontroller is a small computer on a single integrated circuit containing a processor core, memory, and programmable input/output peripherals (Wikipedia article on microcontrollers).
A properly programmed microcontroller can be used to send commands to a speed controller in order to autonomously operate a robot, but a microcontroller does not have the current capacity to directly control an antweight motor.
When I give the robot command from the receiver, the ESCs show that it is receiving, the [indicator] lights go solid when I give 100% throttle, but there is absolutely nothing from the motors. I took off the lipo and put on a nine volt (I have adaptors for the 9v snaps and lipos) and the same thing happened. I already have two spare motors, luckily, but the competition begins at 7:00 on saturday and I am going to Philadelphia that night.
Do you have any recommendations? Thank you, a very distraught New York
A: I don't see how you could damage the motors by 'sparking' a hot battery connector to one or both of them. Try wiring a 9 volt battery direct to each motor to check them, but they should be fine.
You know the radio is working properly -- the ESC indicator lights are showing correct response to radio command input. If the motors are OK and everything up to the power output from the ESCs is good, then the problem must be either the power output stage from the ESCs or something in the wiring.
A: Yes, the Spektrum AR6255 receiver will failsafe to preset points on all six channels with either DSM2 or DSMX transmitters. All DSM2 receivers are upwardly compatible with DSMX transmitters -- the failsafe functions of the receiver will not change. Note that DSM2 and DSMX receivers are not compatible with the first generation DSM transmitters (e.g. DX6).
See the Spektrum DSMX User Guide for more info.
A: It's not your fault that you're confused. Only a very small percent of radio gear is sold to robot builders -- the majority of sales are to model aircraft fliers, and the terminology used to describe a system's features is all in airplane/helicopter lingo. A lot of the features found on good radio equipment don't have any use at all on a combat robot, but it's kinda like cable TV: you have to buy a package with a lot of stuff you don't want in order to get the stuff you need.
We've just finished a guide to help combat robot builders sort thru the unfamilliar aircraft language and find the radio features they need to obtain the best possible control of their machines with the least frustration. This should help: Team Run Amok R/C Feature Selection Guide.
A: I don't claim any particular expertise in 'very cheap' radio systems. I can tell you that once you use a good radio you'll understand very well why we recommend staying away from these cheap systems.
If you're willing to put up with very limited adjustability, a poor manual, and bare-minimum robot functionality - you could try the HobbyKing HK6S for your small, low-power backyard fighter. It includes mixing for single-stick throttle and steering, and has a simple setup that does not require a computer connection. Lack of failsafe capability makes it unsuitable for competition, but it could be OK for your purpose. Best luck.
Mark J: given the possible choices I like Aaron's radio recommendation, but I think he is being overly kind when he mentions the 'poor manual'. I'd say the manuals you get from Hobby King / Turnigy are completely awful. Here are a couple of entirely typical passages from an actual Turnigy R/C manual -- no kidding:
If you don't already know what you're doing, that gibberish certainly won't help. Novice builders don't need the world of frustration that comes with a cheap Chinese radio system. If you really don't have the budget for a good radio, your best option is to go with the simplest cheap system that will suit your purpose and hope you can figure it out without the manual.
My electronics came out alive but my ESC is acting weirder than usual. I'm using a Sabertooth 5 RC and after I drive my robot around a bit a red light flashes. I checked to see if it was overheating and I checked my battery and everything checked out fine. I know my current isn't too high as this didn't happen in battle and the system I'm using is identical to the one I used at the tournament. Do you have any idea as to what happened?
A: That's a great attitude! Failure is a much better teacher than success if you're willing to accept the lesson.
You've got a battery problem. As I recall you're running a 9.6 volt NiMHd battery. If I'm mistaken, write back -- Lithium batteries requireire a different diagnostic process.
A flashing red error LED on the Sabertooth indicates a SEVERELY depleated battery that's dropping well below 6 volts under load. Fully charge the battery and try again. If you still don't get reasonable run time, one or more of the cells are damaged or dead. I don't know the history of your battery, but if it's an old hand-me-down pack from an R/C toy car it's time to upgrade.
A: The short answer is 'no'.
Lithium Polymer batteries should not be discharged below ~3.0 volts per cell to avoid damage to the battery. Many ESCs have a 'LiPoly cutoff' mode that monitors the battery voltage and cuts off power when the battery reaches the critical voltage. The FingerTECH tinyESC description says it has 'undervoltage' protection, but it wasn't clear to me exactly what that ment. I wrote to FingerTech for clarification and received this explanation:
I don't recommend going into combat with a 'hard' LiPoly voltage cutoff that shuts down your robot. That's fine for practice, but losing a match to save a battery is not a good trade-off in my book. If your ESC has a LiPoly cutoff, turn it off for a tournament. If you're worried about the battery you can use a LiPoly voltage alarm buzzer rather than a cutoff -- it gives you the option of finishing the match (maybe winning) or shutting down (losing).
A: You want me to believe that you built a 21-motor robot before you decided to ask around to find out how to control it? Bullpucky!
The Robo-One competitors have experience with control of large numbers of servo motors -- see if the crowd over at the Robosavvy forum will believe your story.
A: Maybe, but I need more information:
What does it do when it does 'something else'? Will it do 'something else' when just sitting still, or does it only happen when moving? What motors are you controlling with the Sabertooth? Is there also a weapon motor (controlled by another ESC)? What is your battery type and capacity? Are you SURE the battery fully charged? What R/C system are you using?
Q: 'Something else' is sudden backing up, turning, full power forward, and so on. It will do 'something else' just sitting there and while moving. I'm controlling two FingerTech Spark 35:1 Gearmotors with my Sabertooth. My power supply is a Ni-MH, 9.6 volt, 600 mAH battery. I'm using a simple pistol grip two channel [AM] radio system without a weapon system. Also, as a side-note, my antenna was dammaged and I have repaired it by soldering a 'like' wire to it to lengthen it. My antenna is enclosed in an aluminum body.
A: OK, I remember you asking questions earlier about this 'bot. I don't think you have an ESC problem, you have a radio problem. Your AM radio is particularly sensitive to radio frequency noise. If your radio reception is weak, all the receiver 'hears' is the noise. A few things to check to improve the signal strength and reduce the noise:
Thanks, New York
A: Your 'bot uses two 9-volt alkaline batteries in parallel to provide extra amperage at 9-volts. Since you have no active weapon you could simply remove one of the batteries to save weight. Give that a try and see if you still have good pushing power. See the PowerStream 9-volt battery discharge tests for guidance on the best alkaline batteries for use in high-drain applications.
Switching to a LiPoly battery will save more weight and is simple -- if a little expensive. You'd need a 2 or 3-cell LiPoly of suitable capacity, a LiPoly charger, some suitable multi-strand wire, good quality plug connectors for the battery/'bot/charger, and a couple minutes with a soldering iron. There are many prior posts on LiPolys and connectors in this archive.
Q: Aaron, thanks for the advice on Hangar 11. I tried using one 9v battery, and the performance is suboptimal. I would be happy to purchase a Lipo, and I have some for model helicopters. I doubt they are the right ones.
How much weight would I save with a Lipo? With that weight I save, could I try upgrading the motors to something with more torque and/or a little more speed (I know you cannot usually get both), or a basic lifter like the ones in your diagram that could give me an edge against wedge bots, and the remove it when I fight a spinner? For the lifter, I think the most basic mechanism would be the best for this bot. This all, of course, depends on the saved weight. What are your thoughts? I hope I am not steering away from what worked, but every time that I fought a wedge bot I was losing for some of it until I found a way to manage to pit them. Another option is to make a better passive weapon.
Thanks, New York
A: Your two 9 volt alkaline batteries have a combined weight of about 3.25 ounces. Under load they supply only about 7 volts to the motors due to their high internal resistance, at a combined capacity of about 400 mAH -- see the PowerStream 9-volt battery discharge tests. A two-cell LiPoly battery of about 400 mAH capacity has much lower internal resistance and can provide at least that much true voltage at a weight of about 1 ounce. I'm assuming that you get several matches from your 9-volt alkalines, so you could reduce the capacity (and weight) of the LiPoly battery if you were willing to recharge after every match.
You CAN get both greater speed and greater torque from a motor upgrade. You can also keep your current motors and overvolt them to gain both speed and torque. Many competitors run the motors you have at 11.1 volts. Consider -- do you really need more power and speed?
Exactly what you do for your upgrade is your choice. Consider what weakness your 'bot currently has, then upgrade with something that will strengthen that weakness and blend with your driving style.
A: Mark J. here: a dual-conversion receiver requires a dual-conversion crystal. Installing a single-conversion crystal will do no harm, but the receiver will simply not operate.
A: Mark J. here: I'd guess that you have not succesfully bound the R617FS receiver to the T6EX transmitter. There are reported problems with this transmitter/receiver pairing. As a first step I'd suggest you consult the manual and confirm that the receiver is properly binding to the transmitter.
A: Mark J. here: does that 8.4 volt 200 mAh battery also provide power to your receiver and servos? If so, there may be a couple of problems:
Q: The 8.4v 200mAh battery is only connected to the Meccano motor. It doesn't provide power to the receiver and servos. I already have a 6v battery pack powering the radio gear. When the motor system is not connected, the robot moves about fine, with no problems whatsoever. It's only when I try to turn the motor on with the BattleSwitch that it starts jigging about out of control, and the motor tends to operate intermittantly. All I want is to turn the motor on and off normally, AND have the drive system functioning without interference.
A: OK, first have a look at the Ask Aaron Radio Reception Problems in Combat Robots page for general tips on radio interference.
Next, if that Meccano motor is new you should break it in to contour the brushes to the commutator. Run it unloaded at about 3 volts for five minutes. Properly countoured brushes will reduce radio interference.
I'm still concerned about the battery that powers your receiver. The BattleSwitch relay adds only a small drain, but if you're running a marginal battery it could be enough to glitch your radio. Charge it, and try another battery if the problem continues.
Q: I have changed the receiver battery from 6v to 4.8v, so it stays within the BattleSwitch's input limit, but it still glitches out of control. I have tried keeping the wires as far away from each other as possible, but the same problem keeps occurring. However, I have just tried using the BattleSwitch on an LED light instead of the motor, and it seems to work fine. Maybe the problem could be the motor? Will it need a diode?
Either way, thank you so much for your help and all your suggestions. Maybe you could humour me with one last question. How fast does a Meccano motor spin when powered by an 8.4v battery?
A: Happy to hear you found the solution! For the benefit of other readers:
Meccano kits are not very popular in the U.S. and I'm not familliar with the motors. There seem to be several varieties. The most common is a small high-speed low-torque plastic-cased motor with a square flange. This motor would have an unloaded speed near 15,000 RPM at 8.4 volts. Actual speed under load will be much less, depending on what you're spinning.
A: Mark J. here: as I recall, there was no wiring passing between the two halves [left/right] of 'Flexi Flyer'. I believe that each side of the articulated robot had its own battery, receiver, and ESC -- it was essentially two robots held together with a pivot hinge.
The two articulated halves [front/rear] of 'Hammerhead' were most likely set up the same way, but I can't confirm that. Running power cables or other critical wiring thru a flex-junction is best avoided.
A: Mark J. here: have you considered reading the manual?
I'm guessing that you have the ESC in 'Lithium Mode' and that the battery needs to be charged. Read the one-page manual; it will tell you what the lights are about. Charge the battery, and try again. If you still have questions after you read the manual, write back and tell me how you have the option switches set and what type of battery you have.
Note: I recommend turning off 'Lithium Mode' when actually competing. It shuts down your robot to protect your lithium battery from discharging below 3 volts per cell. That's very handy when practicing, but I'd much rather fry the battery than have my robot shut down near the end of a match!
Q: I'm the Sabertooth guy, I'm reading through the manual, flipping the DIP switches the way I think they should, and my robot goes wild. It dosn't do anything without the remote on but as soon as I switch it on my robot does nothing I want it to. I'm using a non-lithium, pistol grip transmitter, I want the remote to be linear, could you tell me how to set it up? I'm sorry for begging but I'm confused to no end.
A: That's why we're here.
First, make sure the ESC connectors are plugged into the correct receiver ports - the ports on the Traxxas receiver are reversed! Channel 1 controls steering and channel 2 controls throttle -- plug the 'channel 1' ESC lead into channel 2 on the receiver, and plug the 'channel 2' ESC lead into channel 1.
I make the Sabertooth switch set-up like this: switch 1 down, switches 2 thru 6 up. See the photo.
Power up and adjust the trim settings until the motors stop. Now try forward throttle:
A: Way too little information.
A battery charger must be correctly matched to the battery. A charger designed for NiCad batteries cannot, for example, be safely used to charge lithium batteries. Assuming that your charger is the correct type for your specific battery, most batteries can be charged at a rate that will fully charge them in one hour. Your 700 mAH battery can likely be charged at a 700 mA rate with an appropriate charger, but check with the battery manufacturer for a battery spec sheet to find the maximum charge rate.
A: I don't know where that 'wikifact' came from. Early Battlebots rules said:
Later BattleBots rules were modified to explicitly restrict lasers to "Class IIIa or below".
Current RFL rules forbid any lights that impair the view of entrants, judges, or the audience. Lasers above Class I - which are very low power - are specifically forbidden.
So, yes you can use very low power, eye-safe lasers as long as they don't interfere with anyone viewing the robots.
A: Mark J. here: we give short answers to questions about combat robots. Maybe you could find a website called 'Ask Some Guy: R/C Helicopters Q&A' and hope that he has time to write a few dozen pages to answer your very general questions.
If I ever write a book about R/C helicopters I'll be sure to send you a copy.
A: The Futaba 6EX is a 6-channel 2.4 GHz radio system, but only the throttle channel will failsafe on loss of signal. Under US combat rules a combat robot with active weaponry must failsafe all drivetrain and weapon channels on signal loss. The Futaba 6EX does not meet that requirement.
Check the rules governing your competition to see what failsafe functions are required.
A: What speed controller are you using? A simple pistol grip radio like the Traxxas requires an ESC with on-board mixing to control a differential steering robot, and this sounds like an ESC set-up problem. Check your ESC documentation.
Q: I was using old servo ESC's, does this mean I'll have to get a new ESC?
A: It might be a good idea, but you can use an inexpensive plug-in channel mixer between the receiver and the ESCs.
Your transmitter throttle trigger sends out commands to only one channel of the receiver, and your steering knob sends commands to the other channel. If you have an ESC plugged into each receiver channel, only one will respond to throttle commands -- the other will respond only to steering input. A channel mixer will take the throttle and steering information from the receiver and send appropriate signals to the two ESCs so that both motors will respond to throttle and steering commands correctly.
Q: I was looking at the diagram on #19, and I was wondering, my receiver has a battery port, in the diagram it appeared as if there was no battery port. Could you explain this?
A: Some receivers have a separate battery port and some do not.
Q: My battery port has 3 leads, how do I run a battery through it then? Could you just give me a diagram of a BEC-less circuit?
A: There is a wiring diagram on page 2 of the Traxxas manual. Battery + is red wire, battery - is black wire, the white 'signal' wire is not used in the battery hook-up. Exceed 6 volts at your own risk!
Q: So just to make sure I'm right; the BEC-less circuit is just like the BEC circuit except that it has a small battery running through the receiver?
A: Since you're using hacked servo ESCs that draw power for their motors from the receiver cable, this 'small battery' will be the only battery in your 'bot -- so maybe it isn't so small. Your circuit will look like the Traxxas manual diagram, but with the V-tail mixer in between the receiver and the servos.
Do not exceed the max voltage rating of the receiver.
Q: I'm switching to sturdier ESC. Does this mean I'll be using two batteries now?
A: Good plan. If you're switching to a real ESC it will probably have a battery eliminator circuit. If so, you need only a single battery and you will wire like the diagram in #19. Many ESCs also have a built-in mixer, eliminating the need for the stand-alone V-tail mixer.
A: The wireing for our infamous rat trap antweight 'Rat Amok' is very simple -- no diagram required. The drive motors are hacked servos; they simply plug into receiver outputs 1 and 2 for Elevon mixing. The rat trap release is controlled by a very small servo plugged into receiver output 5 and controlled by the landing gear switch of the Futaba transmitter. A small 6 volt NiMHd battery pack plugs into the battery port of the receiver and powers everything.
Q: How do directly wire the battery to the receiver?
A: First, check the voltage tollerance range for the receiver and servos. Exceeding their maximum voltage can very quickly fry the receiver. Solder a servo cable to the battery terminals: red wire to the '+' terminal, black wire (sometimes brown) to the '-' terminal. The third wire is not used. Plug the cable into any unused port in the receiver and you've got power for the receiver and servos. You can splice a switch in the '+' wire, or just unplug the battery to turn off the power.
This method does NOT work for more conventional robots with a discrete Electronic Speed Controller. Most ESCs have a 'Battery Eliminator Circuit' (BEC) that feeds a steady 5 volts to the receiver thru the receiver connections. See #19 for a wireing diagram that includes drive and weapon ESCs.
A: Thank you for providing full information on your radio and stick preference -- it helps a lot. The wireing is easy, but the transmitter setup takes a little work. For right stick throttle and right stick steering on a Mode 2 transmitter:
Q: After i tested it, because both of the single channel speed controllers have a BEC, I've cut the red wire that leads from the ESC to the receiver, however, the motors that is connected to the ESC that has the cutted red wire won't move even after i moved the forward throttle(only the motor that is connected to the ESC that still have the uncutted red wire moves). What should i do?
A: You haven't told me what speed controllers you're using. You mentioned that they were 'like' Victors, but Victors have no battery eliminator circuit (BEC). It might help if I knew.
Cutting the red (power +) wire from the ESC to the receiver should not cause a problem with the speed controller. The receiver uses only the ground and signal wires to communicate with the ESC. My guess is that you damaged one of the other wires while cutting the red power wire in the center of the flat receiver cable. Examine and test the remaining wires. If all else fails, patch the red wire to confirm that the ESC still does work with all three wires in place.
A: No, two different things.
A: To control one drive motor forward/backward you need:
Which receiver output channels you will plug your speed controller leads into depends on which transmitter sticks you want to use for control and whether you want simple 'tank steer' or the more convenient and adjustable 'channel mixing'. Search this archive for 'create proportional drive mixing'. There is also useful information in our transmitter programming guide. The guide is written for Futaba transmitters, but a lot of the information applies to all radio systems.
Mark J. here: for the record, the Spektrum AR6210 is not intended for use in a combat robot. If the transmitter signal is lost, channel 3 (throttle) will failsafe to a set position, but all other channels will lock in the position they last received from the transmitter. Whether or not your event organizer cares about your safety, I can't recommend that you use this receiver.
A: Combat robots are dangerous. Combat tournament rules require that robot propulsion and weapon systems shut down if the radio control signal is lost; the robot control systems must safely respond to a radio 'fail' condition. The specific requirements of the failsafe response depend on the weight class and weapon type -- see #18 for specific requirements.
From the RFL ruleset:
Q: What's a master kill switch?
A: A master kill switch is another safety device. In case of short circuit, fire, or a runaway condition caused by equipment failure, tournament rules require a single manually operated master power switch that will safely cut power to the major electrical systems of the robot.
From the RFL ruleset:
A: Instructions for crimping and soldering PowerPole connectors are at the Anderson Power Products website.
A: How many wires you can crimp into an Anderson PowerPole connector depends on which model of the connector you use and how big the wires are. The 45 amp PowerPoles will crimp a single 10 guage wire -- three 14 guage wires should just about cram in there. I solder the connection after crimping just to make sure everything stays put.
A: The electrical connectors must handle high amps and survive severe mechanical shock loading -- so no alligator clips, please. We like Deans Ultra plugs for small robots and Anderson PowerPole connectors for larger applications.
Would that be the best way to program this, or do you have any suggestions for possible solutions?
A: Mark J. here: as the radio specialist for Team Run Amok I'm going to intercept this question.
You haven't mentioned if this weapon is a spinner, a lifter, or something else entirely. Without knowing what the weapon is I can't offer a 'best' control option. For example: that 'Throttle Cut' push button on the DX6i is not a 'toggle', it's a momentary contact switch that is active only so long as you continue to hold it down. That could become inconvenient and tiresome for some types of weaponry. You also wouldn't want to abruptly reverse a spinner from full-speed; you'd want a gradual 'spin down' to avoid killing the motor and ESC.
The simple generic solution is to assign the weapon to the ratcheted throttle channel (or rudder channel if a spring-center is more convenient) for full proportional forward/reverse weapon control from the left stick, and use Delta-Wing (Elevon) mixing to control the robot drive system from the right stick.
If you really want to use the transmitter switches for on/off and forward/reverse control the weapon, send me more information about the weapon itself and I'll see what I can recommend.
A: You didn't tell me what size packs you're looking for. A quick web search ('A123 battery packs') turns up several sources and a selection of small packs
A: I don't think you understand what a Battery Eliminator Circuit (BEC) does.
An R/C receiver typically requires a lower voltage power supply than the main battery for the vehicle. A BEC is a voltage regulator that connects to the main system battery and provides a stable 5 volts to power the receiver via a standard receiver cable. This eliminates the need for a separate small battery to power the receiver. Search for 'how do battery eliminator circuits work' in this archive for more info.
Receivers do not have BECs -- but Electronic Speed Controllers (ESCs) often have a built-in BEC to power the receiver. This makes sense as the ESC will be attached to the main battery and already has a cable going to the receiver that can carry the power. Check the documentaion for the ESC you plan to use to see if it has a BEC.
If main battery power is available to the BEC and the BEC is connected to your receiver, the receiver will be active and can be bound.
Note: the Spektrum AR6255 receiver has a relatively broad input voltage tolerance: 3.5 to 9.6 volts. If your main battery is within this range you can power this receiver directly from the main battery without a BEC via a standard receiver cable.
I was think I would like to use two high amp Mosfets. Is this possible? If so, what would the wiring look like? Simular like battery isolator, but totally disconnect the primary battery.
A: If the two battery sources are identical, just wire them in parallel to double the capacity. No need to complicate things with MosFETs and switching. Keep it simple.
A: Mark J. here: most of the switches on your DX6i aren't 'channels'. Your radio is a six channel transmitter designed primarilly for aircraft, so some of the functions don't do anything at all useful for a combat robot.
If you really need to use the [AUX] output and control it with the Flap switch, you can either move the robot steering off the [AILE] output channel or set a 'programmable mix' to offset the effect of the (FLAP) input on the [AILE] output. Both are fairly advanced tweeks -- leave it alone unless you really need that sixth channel.
Tip: aileron dual rates are VERY useful in combat robot control. See if you can figure out why and how.
A: Sorry, we don't work with BASIC Stamp programming. There are a couple autonomous robot builders on the Western Allied Robotics forum that may be able to help -- try a post there.
A: Futaba is a major R/C manufacturer that builds quality equipment. However, the 4YF FHSS is a really basic 'entry level' radio with very limited features. Most importantly the 4YF FHSS system does not failsafe, which makes it generally unacceptable for combat robot use.
We have posts covering our recommendations for combat robot R/C gear in this archive. I suggest you start there rather than asking our opinion on every inexpensive radio you find.
A: Mark J. here: no, the electrical components of a typical combat robot are wired as a parallel circuit. Each of the components will be able to access the full voltage of the battery. The voltage needs of the components are NOT additive.
Example: a battery pack in a combat robot provides 7.4 volts. If wired as shown in #19, both drive motors, the weapon motor, both ESCs and the power light can each access the full battery voltage of 7.4 volts. The receiver is typically powered by a voltage regulator built into the drive ESC and will have its voltage limited to about 5 volts.
The voltage requirements of the components are not additive, but the amperage requirements of the components ARE additive. If the two drive motors have a maximum current draw of 4 amps each and the weapon motor has a maximum current draw of 8 amps, the battery may have to deliver 16 amps in a 'worst case' situation. The current draw of the ESCs, receiver, and power light are trivial.
P.S. I have ordered Grant Imahara's book and already got another one based on your recommendation. Thank you very much!
A: Ten years ago a 'good' R/C system in common useage by combat builders cost twice what a 'good' radio does now, so I don't feel comfortable setting a fixed price line. Also, the demands of combat robotics are different than for other R/C applications -- one $200 radio model might be great for robot combat, while another $200 radio might be a real headache.
As with many combat robot components, I recommend that you see what radio systems are popular with successful builders. Until you have enough experience to go your own way, following the lead of other teams is a good plan. If winning teams aren't using that $40 'Super Bamboo 3000' radio you found on-line there's most likely a really good reason.
Q: The [Popular R/C transmitter] with [Super Bamboo receiver] combo has been used successfully by both [team #1] and [team #2] over the past year or so. Total cost for the [popular transmitter]/[Bamboo receiver] combo is around $[very little]. (West Chester)
A: I know that [team #1] has looked into [Super Bamboo] radio gear, but I can't verify use of that specific R/C system in combat by either of the teams you mention. If they are using it they're in the minority and taking chances I can't recommend. Don't push your luck -- you'll feel really dumb if your $[very little] radio glitches and boots you out of a tournament.
A: The failsafe behavior of the DX5e depends on the receiver used with it.
Q: Does the [Spektrum] DX6i [R/C transmitter] Failsafe?
A: Same deal as the DX5e.
Q: is the ar600 receiver legal for combat robotics? This question is related to the question on the dx5e
A: Mark J. here: the failsafe requirements for combat robotics address the behavior of the entire robot when the transmitter signal is lost.
Q: The Hobby King "orange" receiver will failsafe on all channels when bound to a DX5e or a DX6i.
A: I cannot confirm that, and I DO NOT recommend Hobby King products for use in combat robots. Like Aaron said above, don't go cheap on your radio.
Update: an article in the January, 2012 issue of Servo Magazine says that the Hobby King R410 and R610 receivers will bind to the Spektrum DSM2 transmitters and implies (but never actually states) that they do failsafe on all channels. You can roll the dice if you like, but I'm not going into combat with a $5.95 receiver.
Q: IS the [Tactic] TTX404 transmitter with the [Tactic] TR-624 receiver legal for combat robotics? Is it good?
A: Pay close attention because I'm getting tired of saying this:
I'm not going to go thru all the chinese knock-off radio systems individually to point out their flaws and list the things that would make you wish you'd spent a few more bucks. Legal or not, I recommend that you stay away from cheap, off-brand radio gear!
Most robot builders choose Spektrum radios, and for good reasons. Here are a few:
A: An Electronic Speed Controller (ESC) takes the signal from the R/C receiver and translates it into controlled power levels for weapon or drive motors. There is a great deal of discussion about the selection and use of ESCs in the archive.
A: Holy cripes man -- read the event rules!! No respectable event would allow uncontrolled weapon motors. you will also (I hope) be required to have an R/C system that shuts down all weapon and drive power if the R/C signal fails. Safety first! See #18.
A: There is no difference in the operation of an R/C peizo gyro on robots with 2, 4 or more wheels. The turn signal from the receiver is sent to the gyro where it is compared to the actual turning motion of the robot. The gyro modifies the turn signal and sends it on to the signal mixer. The mixer sends the modified signal to the left and right side ESCs to keep the robot on the desired course despite minor mechanical or environmental influences.
Q: It's me gyro guy again. Would i need a gyro if i used 2 motors to run 4 wheels like BioHazard?
A: First, 'BioHazard' runs six wheels - not four. Six wheel robots tend to be both stable and very maneuverable.
I'm not sure any robot 'needs' a gyro. Build it and see how it handles. Handling depends on factors like weight distribution, wheel track, wheelbase, and tire width. If you have trouble holding a straight line or carving a smooth turn you can add a gyro to assist.
A: Mark J. here: yes, the Airtronics SD-5G is suitable for robot combat. It meets the minimum requirements for all weight classes and weapon types, it has the usual features to adjust the radio response to your preferences, and the manual is complete and written in understandable english.
A: Mark J. here: think about what you're asking. If you're in the middle of a robot fight do you really want circuitry that shuts down your robot to 'protect' your battery?
In combat, robots do not run fuses, circuit breakers, or any device that could decide to protect the robot by shutting it down in the middle of a fight. Size your battery to provide ample power for a 'worst case' match. If you're worried, you can use an audible warning module to let you know when your battery is getting low and give you the option of shutting down, but don't use a cutoff!
A: Mark J. here: some Futaba transmitters (3PK, 7U, 8U, 9C, T10C, 12FG, 12Z, 14MZ) do allow for replacement of the frequency module with a 2.4 GHz conversion package that includes a new receiver and antenna. The resulting transmitter/receiver package is entirely ground legal, just like a standard 2.4 GHz system.
A: Mark J. here: I don't recommend going cheap on electronics, and the Turnigy 9x (AKA SkyFly 9x) is a really cheap knock-off radio system. It doesn't even come with a manual. If you have never owned a 2.4 gHz radio, I certainly wouldn't recommend starting with this one. Features are limited, programming is awkward, and quality control is poor.
You're getting what you pay for, which in this case is very little. In fact, you get too little for a combat robot -- there are no failsafes. That makes it useless for robots with active weapons. Save your money and buy a quality radio.
A: I don't know what level of information you're looking for, and this is not a topic where you're going to pick up useable skills from reading a couple of websites. Try a web search for "RF circuits" and browse the results to see what's available. I can recommend a good school for an EE degree if you like.
A: Yes, it can and has been done with either wired or wireless PS2 controllers. You need a microcontroller interface, which is not particularly simple. Lynxmotion< has the parts and tutorials to help guide you thru the process.
A: Stay away from these, Antony. There are no specs given for either the battery or the charger. Buy a quality li-poly battery and charger -- this is not a place to scrimp.
A: Mark J. here: yes, Sealed Lead Acid (SLA) batteries are the most forgiving of the battery technologies available for combat robots. Our charging technique for the 'Hawker' brand SLAs used in 'Run Amok' and 'The Gap' was really simple: plug into constant-voltage power supply and walk away. It simply wasn't possible to over or under-charge them, and there was no possibility of damaging the batteries.
The next step down on the 'idiot proof' scale are the Nickel Cadmium (NiCad) and Nickel Metal Hydride (NiMHd) cells. A good quality constant amperage 'peak detector' smart charger will pretty much automate the charging process, although you do have to look out for 'false peaks' that can prematurely stop the charging. Buy a quality charger and you should have no trouble, even in a busy combat pit.
Another step down brings you to the newer Lithium Iron Phosphate (LiFePO4) cells, also known as 'A123' or 'M1'. Although less 'dangerous' than other lithium battery types, the A123 cells do require considerable care to perform well. Special 'cell balancing' equipment is needed to keep the battery packs competition ready, but relatively simple 'voltage cutoff' charging can be done between matches.
A: There are two widely used ways to encode information on a radio wave: 'amplitude modulation' (AM) is the simpler method that requires less complex and expensive equipment, but is more vulnerable to interference. R/C toys use AM radio systems. Hobby grade radios generally use the more complex 'frequency modulation' system to assure better control. Only very light combat robots without active weaponry are allowed to use AM radios.
A: Mark J. here: you can't directly judge the amperage capacity of a switch by the size of the wire attached to it -- but 20 gauge wire itself is rated for only 11 amps max. It is likely that any switch using such small wire would be rated for no more than 5 amps. Trying to push 35 amps thru such a switch will cause catastrophic failure very quickly.
Q: My mistake: it is more likely 19/18 awg. The switch is roughly the same size as this switch. It would just need to handle 35 amps for a half second in case the weapon motor stalls. It is a big weapon motor. What do other beetleweights use for a switch for similar levels of current?
A: Consider how bad you would feel when this switch failed and took you out of a tournament after all the work you put into building your robot and getting there. The switch in the picture is an R/C receiver switch, designed to handle less than an amp. DO NOT USE THIS SWITCH FOR YOUR WEAPON MOTOR!!
The preferred method for high current control in a small and light package is to make a 'removable link' from a suitable wire connector. See the diagram at right for proper use. We use Deans connectors for this purpose.
Reply: That idea never occurred to me. Thanks!
A: No transmitter can 'shut off' a gyro unless the gyro has a dedicated second channel for sensitivity control. Pick a gyro with a remote sensitivity control and any radio system with a spare channel can turn off the gyro.
A 'death spin' happens when a gyro enhanced robot gets itself inverted. The 'left-right' controls don't change when the robot is inverted, but the gyro corrections are reversed! The robot will spin uncontrollably as the gyro keeps adding more and more 'correction' in the wrong direction. Unless you can shut down the gyro your only option is to turn off the transmitter and let the 'fail-safe' shut the whole robot down -- you're hosed!
A: Heat is the big enemy of LiPo batteries. A tiny spark with no heating or signs of swelling likely did no damage. Inspect after every use, as you should do with any LiPo battery, and you should be fine.
Q: How paranoid should I be about charging a Lipo? Keep in mind that my definition of paranoid is much more extreme than those of other people. For quick reference, what other people call "extremely careful" is what I would call "moderately concerned." Example: When I first heard that you should never charge a Lipo unattended, I thought they meant you had to sit and stare at it the whole time or else you risked Armageddon.
A: LiPo cells give ample warning of trouble. Use a quality charger intended for LiPo batteries, keep the battery within its discharge amperage rating, and inspect after use for signs of swelling. If you want to be extra careful, there are flameproof 'charging bags' available from hobby suppliers. Maybe you should keep your friend in one?
A: Mark J. here: ideally you shouldn't rely on the ESC to decide on what to do on signal loss -- it should be handled by the receiver. If your receiver takes no decisive action and simply defaults to 'no signal' then the ESC should correctly shut down. To be certain, I would recommend that you select an ESC that specifies its action on signal loss.
A: A solid-state peizo gyro will greatly improve both straight-line and turning control on a two-wheeled robot. All of your questions about gyros have been previously answered in posts found in this archive - start reading! You will also be interested in the Team Run Amok gyro guide. Write back if you have specific questions not already answered.
Q: Hi Aaron, follow up on the gyro issue. I manage to find 'GWS GW/PG-02 Dual-Rate Piezo Gyro'. and this stuff is just within my budget. The problem is i'm not really sure whether it will work with my system & honestly i'm not really sure about the wiring/connection. What i can tell you is that the ESC (Sabertooth) that i use allows channel mixing, and i use the left analog stick on my Futaba transmitter to control both Forward/Reverse & TurnLeft/TurnRight motions. I have browse through your gyro guide but didn't understand it quite well. Please help me further. Thanks!
A: OK, here are the high points...
A: The 'Arduino Nano Carrier' board was a prototyping board developed for a class at MIT. It is not, AFAIK, commercially available. The 'Arduino Nano 3.0' board itself is available thru a link on the page you reference.
Additional questions about the Arduino microcontroller should be directed to the Arduino Forum -- it is not a component commonly used in combat robots.
Q: Do you have any diagram or info for the circuit board?
A: No. Please direct Arduino questions to the Arduino Forum.
A: Mark J. here: in the BattleBots era many teams had a 'weapons officer' who operated the weapon via a small switchbox on a long, hard-wired 'tether' plugged into the transmitter. This freed the driver from worrying about the weapon status and kept his attention focused on maneuvering the robot.
Now that reliable radio systems are much less expensive, it's simpler and more convenient to give the weapons officer their own transmitter with a dedicated weapon receiver in the robot.
A: Lots of potential trouble points here. My first guess is that you haven't 'bound' the receiver to the transmitter. Follow the instructions in the AR500 user guide or on page 9 of the DX5e manual. Read the rest of the manual while you're at it.
Q: Hi, I cant bind the reciever to the transmitter because the light on the RECIEVER (there's supposed to be an amber one) won't light up. The Esc's light works. I think the ESC is giving it power. The amber light on the Reciever should be flashing but it's just staying off.
A: Check to make sure the receiver is being powered by the ESC -- it sounds as if there is no power to the receiver. If the receiver is getting power and you're getting no response from it, I think the receiver is fried.
Q: To check the power to the reciever can I use a voltmeter? If sowhere do I check. (which wires?)
A: Power the electrics up and unplug one of the ESC connectors from the receiver. Check the power at the connector plug with a voltmeter. The red(+) and brown(-) wires carry 5 volt power. Be extra careful to avoid shorting the power connections with the voltmeter probes.
Note that it is possible to insert the ESC plugs into the receiver upside down. This will do no damage, but the receiver will have no power. The correct insertion has the brown wire closest to the bottom edge of the AR500.
Yet shortly into our third match, the robot suddenly lost reception for a bit and then started moving backwards. This cost us the match and the competition.
The robot used to have this problem, yet this has been the first major incident for a long time. All the motors have capacitors, and the 2.4ghz receiver has about 1/3rd of it's longer antenna completely outside of the aluminum armor.
Oh ya: The robot was an electric hammer, and I liked its performance.
More information can be provided if needed.
A: I don't think that more information is going to help. You don't mention what specific radio system you're using, but I'm going to guess that it's at fault. You can't afford to rely on a radio that won't hold settings and goes glitchy at a competition. Replace it, and make sure it's a quality radio.
Q: It is a spectrum 5, with an AR500 receiver.
A: Mark J. here: electronic trouble (especially intermittent radio trouble) is very tough to diagnose remotely. I think Aaron's suspicion is reasonable; your radio receiver and/or transmitter has gone glitchy and should be replaced.
A: RFL regulations do not require radio failsafes for one-pound robots without an active weapon. Antweights with an active weapon require a failsafe only on the weapon channel.
The Spektum AR6200 receiver has a suitable failsafe response only on channel 3. The other channels do something undesirable for a combat robot: they lock in the position they last had before signal loss. This behavior is not allowable for classes heavier than antweights, but does meet minimum RFL specs if the weapon is controlled by channel 3.
The event organizer has the final say on what is and is not allowed at the event, so best to check with them before you commit to this receiver.
A: Replaceable 'crystals' are used by some hobby grade transmitters and receivers to control the precise frequency upon which the radio commands are sent and received. You may remove the crystals and plug in crystals of a different frequency to switch the radio system to another 'channel' within the same 'band' to avoid interference from another radio on the same channel. Instructions for swapping out crystals will be in the user manual.
Newer 'spread spectrum' radios operating on 900 MHz or 2.4 GHz do not use replaceable crystals and will adjust their signal to avoid interference without any operator involvement.
Toy R/C systems do not have replaceable crystals. Toy radios in the US operate on either 27 MHz or 49 MHz and generally do not allow for channel change. The use of toy radio systems for antweights is limited to robots without active weapons and should be cleared with the event organizer prior to the event.
A: I haven't personally used the Spektrum Microlight receiver, but the comments at 'Robot Marketplace' are all quite positive, and Spektrum in general makes quality products.
Note that the receiver has non-standard failsafe response on all but the throttle channel -- make sure the weapon ESC you select will respond correctly to a 'no signal' input from the receiver and shut down the weapon motor.
A: The 'Robot Fighting League (RFL) regulations' require radio systems that 'failsafe' by bringing the robot drivetrain and weapon to a stop on loss of radio signal for all robots weighing more than 12 pounds and for robots of any weight with active weapons. The regulations do allow for 'homebrew' radio failsafe systems that meet specific criteria:
A: Mark J. here: you have a mode 2 DX6i transmitter and you want throttle on the right stick and steering on the left? No problem. Instead of using Elevon (Delta-Wing) mixing, use V-Tail. Your motor outputs will be channels 3 and 4 on the receiver. Consult your manual for specific instructions on setting up a wing-tail mix.
Here is the setup matrix for modes and mixes to put the controls on the sticks you want to use:
Left Stick Right Stick Left Stick Right Stick
It is possible to change a DX6i transmitter from Mode 2 to Mode 1 thru a hidden menu. You can also swap the spring centering mechanism from the right stick to the left. Here's a video tutorial.
A: Mark J. here: diagram this and you'll see the problem. It works only if the voltages of the two systems are identical. If there is a voltage difference there will be a reverse current flow thru the lower voltage circuit when the switch is 'off', likely destroying the electronics and the battery. Power diodes in the ground circuit could prevent this, but it isn't worth the trouble. Use a DPST switch or energize a relay with one circuit to switch the second circuit.
A: Mark J. here: there should be no compatibility issues between any hobby receiver and any hobby Electronic Speed Controller (ESC). In this case, I'm suspicious of a problem with the Battery Eliminator Circuit (BEC) in the Hobbywing ESC.
A: If you're building an ant I recommend going one of two ways:
As to just going forwards and backwards, you'll still need an interface to interpret the output from the receiver and send power to the motors. The R/C relay interfaces needed to do that are both heavier and more expensive than small speed controllers. There are small, light, inexpensive R/C switches, but they only provide on/off control - no reversing. You'll be much better off to go with full function speed controllers.
I suppose you could modify a pair of R/C servos for continuous rotation. Servos have a very small speed controller built into their internal controller board. It's an inexpensive approach that gives proportional forward and reverse control and simply plugs directly into your receiver - but servos are very slow compared to current antweights or hacked toys. I haven't seen a servo powered ant in many years.
Q: hey what would be a good toy to hack for an antweight?
A: There are several hackable toys discussed in the archive. The Johnny Lightning 'Battle Wheels' R/C toy is widely available and could be a good bet.
When I looked it up, the gyro did not mention it was compatible with Spektrum. Is this true? What would happen if I filed off the groove on the plug and put it into the receiver? If it wouldn't work, where can I find a spektrum compatible gyro?
A: The output signal from all modern R/C receivers is the same, but there are differences in the plugs and wire colors. Some PG-03s came with Hitec 'S' connectors with orang/red/brown wires, and some came with the Futaba 'J' style plug with white/red/black wires.
Your PG-03 has the 'J' plug with the little tab that keeps it from being inserted upside-down into a receiver socket that has a groove for the tab to fit into. See the Servo City Connector Types page for a full explanation. Just shave off that tab and you'll be fine. If it doesn't work, you've plugged it in upside down.
I don't want to use the 1 amp Picoswitch from the RobotMarketPlace because it requires an antiparallel [flyback] diode, while the 10 amp Battleswitch is too heavy and overkill since the valve probably uses around 1 amp at most. The Pololu switches are a possibility but I am not experienced enough in electronics to understand the description well. I have realized that I could use a Fingertech tiny esc to control my valve as it is both compact and lighweight, using the switches on my DX6 instead of the control sticks for the on/reverse effect. What is your suggestion? Thank you.
A: Mark J. here: hold on... the auxiliary channel on your Ant 150 had no reverse, so why do you now need on / off / reverse for your solenoid?
A: It sounds like you aren't controlling these servos with standard hobby radio gear - true?
A standard hobby servo responds to 'pulses' sent along its signal wire to it from the radio receiver (or a device emulating a receiver). The position of the servo depends on the length of the pulse. With a hobby grade radio system it is possible to rotate the servo fast or slow as many degrees as you like. The servo will then attempt to hold its assigned position against external forces. You can find an explanation of the pulse code system at the Seattle Robotics Society servo page.
A servo should not be stalled. The motor draws large current when stalled and the heat build-up from this current will damage the motor rather quickly.
A: Mark J. here: general note - the new LiFePO4 and A123 cells require a different charge cycle with a lower cutoff voltage than other lithium cell types. Do not attempt to charge these cells with a charger designed for Li-Poly or Li-Ion chemistry.
The AstroFlight 109d charger requires the 555 Software upgrade chip in order to be useable with the A123 cells. The upgrade chip will convert a 109 or 110 Deluxe charger to charge only A123 cells -- you will lose the capacity to charge other cell types. The Robot Marketplace sells a 109 with the upgrade chip installed, but there are less expensive A123 chargers that can switch between different cell types including some that do not require an external power supply. I'd suggest looking into alternative chargers to see if they meet your needs before buying an upgraded 109.
Back to your question: the AstroFlight 109 requires the full specified DC power input in order to provide the full specified voltage and amperage output. If you will not be pushing the charger to these limits, a DC power supply with less capacity may be used. You didn't tell me how large a battery pack you plan to charge so I can't comment directly on the suitability of your 8.3 amp power supply.
Q: Thanks for the A123 help! and about my power supply, I will mostly be charging 2 and 4 cell A123s so I belive it should work. I called Battlepacks and they were quite helpfull. On their website they sell an Astroflight 109, and they probably already installed the chip as well. As far as balancers, they have an A123 balancer as well. And seeing so many builders use the Astroflight I figure it might be a good investment. Thanks You for all your help!
A: You're welcome, Daniel.
I suspect that a lot of builders use the AstroFlight 109 for their A123 batteries because they had a 109 to charge their LiPolys and they were able to convert for the small price of the upgrade chip. I like AstroFlight chargers for their reliability and simplicity of use, but if you don't already have a 109 it's expensive for the limited functionality you get. A lot of the R/C aircraft guys seem to be using a 'Thunder Power charger' that is very flexible and includes a cell balancer.
1) When buying a transmitter and receiver, do they have to be from the same company? the same # of channels? Or does simply having matching frequency crystals make them work together?
A: Mark J here: the currently favored 2.4 GHz radio systems do not have crystals. The transmitter and receiver 'talk' back and forth and 'agree' on a frequency that is free and uncluttered. This DSM system is still evolving and has some significant differences between manufacturers and even between current and earlier radios from the same manufacturer. The number of channels does not have to match, but check the documentation carefully for compatability with your chosen receiver. Stick with the same manufacturer.
If you are considering an 'old school' FM radio system, be advised that some combat robot tournaments no longer allow their use. There are two 'flavors' of FM signal used by different manufacturers: positive shift and negative shift. A receiver designed for one shift type will not recognize the other signal regardless of crystal frequency compatability. HiTec and Futaba use negative shift, while Airtronics and JR use positive shift. Some third-party receivers will work with either type of shift -- check their documentation for compatability. Again, the number of channels does not have to be an exact match, although there are some differences in the signal from two or three channel 'pistol grip' transmitters that may cause incompatability in receivers with four or more channels.
Check #18 for minimum radio requirements. Again, some events may have higher requirements. Check the rule set of specific events you plan to enter. I advise picking out a nice 2.4 GHz system that will be accepted anywhere in any class.
2) Once I get my servos spinning, how do I translate that into larger motors driving the robot? Thanks again,
-Russell
A: Inside your servo is a very small electronic speed controller (ESC) that translates the signal from the radio receiver into variable power and polarity to control the servo motor. To control a larger motor you need a larger ESC. See #21 for help in selecting drive motors and matching ESCs. #19 shows how everything gets wired up.
A: Sure. Your computerized transmitter's 'Adjustable Throttle Volume' (ATV) function can set the amount of servo travel on any channel, and even do it differently on each side of the 'neutral' position. See our Futaba transmitter programming guide for more info.
Q: Can you also do the ATV thing with the 5 Channel Spektrum DSM2 2.4ghz?
A: Spektrum calls it 'Travel Adjust'. I believe it's available on every radio they currently make - except the budget 5-channel DX5e: you only get the basics for $60.
Q: Thanks. In addition... damn. That was the one I wanted to buy.
A: I know it's tempting to go for the 'bargain' radio package, but the additional functions on a 'full featured' radio can tame an unruly robot and turn a sitting duck into a tiger. You'd outgrow that DX5e quickly, so spend the extra dollars now and save the expense of a future upgrade.
A: Obtaining warranty service is covered in the manual. The charger has a 5 year guarantee "against workmanship and manufacturing defects" thru the manufacturer. You can call their tech number and ask, but I wouldn't think that a crushed connector would be covered.
Either way, a new Tamiya connector is about $2 at your local hobby shop. That's cheaper than shipping the unit in under warranty -- replace it yourself.
A: Mark J here: pure technical fluffery. The condition you describe only occurs at partial throttle where the controller output voltage is well below the battery level and the current flow is a fraction of the full-power maximum. The peak amperage for which you must design is never higher than the motor draw at the maximum load it will see in operation. The controller cannot stuff more amps thru the circuit than the motor can draw, nor can it supply more total wattage than it draws from the battery.
Consult the
Team Tentacle Torque & Amp-Hour Calculator to calculate the expected maximum operating amperage draw for your drive motors.
A: Hey, how come I didn't get hired for that job?
Faulty radios are uncommon. What is common is to hook everything up and test it without first fully charging the battery pack. A low battery charge will cause symptoms exactly as you describe. With a low battery, the red 'error' LED on the Sabertooth will flash as the motors sputter and draw the voltage below required levels for operation of the electronics. Give the battery a full charge before proceeding.
The next likely culprit is that your Sabertooth ESC is not set-up correctly for R/C control. You say you know it's working properly, but take a minute to step thru the Sabertooth DIP switch wizard and correct any errors in the switch settings. You most likely want:
With the DIP switches set correctly, block the wheels up off the ground and power up the robot - leave the transmitter off. The Sabertooth should display a single dimly glowing blue LED labeled 'status1'. Turn on the transmitter. The 'status1' light should glow brighter to indicate that a control signal is being received. Exercise the transmitter controls and watch the motor response and Sabertooth indicator LEDs. The single blue 'status 1' light should remain brightly lit and no other lights should come on while the motors respond to forward/reverse commands.
If still no joy write back. Report your findings and give me your email address - we can step thru isolating individual components to find the trouble.
A: There are different grades of each battery chemistry type and the maximum charge rate varies with both the chemistry type and the manufacturer. Wherever possible, find and follow the manufacturer's specs for charge rate. This is particularly vital for batteries using lithium based chemistry -- don't fool around with them, they can catch fire if improperly charged!
That said, as a very general rule NiMHd cells should be charged at a rate no greater than '1C' - the rate needed to recharge the fully discharged cell in one hour. For example, a battery made from 4000 mAh NiMHd cells should be charged at no more than 4 amps (4000 mA). Small cells (like AA or AAA size) typically require lower charge rates (try 1/2 C). Monitor the temperature of the battery during the first few charges. Too high a charge rate will make the cells very hot, especially near the end of the charge. Lower the charge rate if the cells get hot.
Q: I can't find a battery charger for Nimh's that is low enough to charge my beetleweight's 400 milliamp 7.2 volt nimh battery pack. what should I do?
A: You should look harder. There are multiple NiCad/NiMh chargers at the Robot Marketplace that have adjustable outputs suitable for your small pack.
Q: Oh ya. Battery guy here again. I ordered my battery using the robot marketplace's custom antweight pack section. Who exactly would I contact for charging information?
A: My 'manufacturer' I mean the company that builds the cells, not the guys who put them together into a pack. In your case, that would be GP batteries: see their Data Sheet for GP40AAAM cells. They recommend 200 to 400 mA for a fast charge.
My guess is that I didn't install the gyro correctly. What is the proper way of aligning and installing a gyro?
A: Mark J here: I'd agree that you have installed the gyro incorrectly. The manual that comes with your gyro should refer to a 'corrective axis' or 'gyro axis of rotation' and diagram how the gyro should be installed relative to that axis. In a combat robot the corrective axis is a line running from the center of the chassis vertically straight up to the sky -- same as in a helicopter, which is likely diagramed. This often means mounting the gyro case 'standing on end' rather than flat on the chassis. It sounds like you currently have the gyro axis of rotation oriented along an axis running thru the robot from left to right.
When properly aligned, an outside force pushing the nose of the robot to one side will result in the robot self-activating the drive system and returning the nose to the original orientation. As noted in the Run Amok gyro guide, a solid-state gyro cannot be used with receiver mixing. You must go 'tank style' control or use an on-board mixer.
Write back if this doesn't clear up you problem.
In theory, this should be enough to dramatically increase the motor's power for a short period, yet be short enough to not fry the motor. (I know from experience that 3 volt motors can survive 150v discharges) That could decrease a spinner's spinup time, make an electric hammer more destructive, give some electric lifters more speed, etc.
A: Mark J here: if you directly charge a capacitor from a 12 volt battery you'll get a capacitor charged to 12 volts - no more. The voltage marked on the side of a capacitor is its maximum operating voltage, not a voltage to which the capacitor will magically charge. The charged capacitor could deliver additional amperage on weapon motor start-up, but no additional voltage. If your battery is adequate for the task you'd see no appreciable performance difference. If your battery in inadequate you'd do better to use the weight of the capacitor toward a larger battery.
It is possible to use a voltage multiplier circuit to charge the capacitor to a voltage higher than the battery supply. You would need to isolate the capacitor from the main weapon circuit, charge it, then switch it in just as the weapon is fired. This is difficult, dangerous, may require advance approval under RFL rules (section 6.2), and runs the risk of frying not just the motor but the battery and any electronics in the circuit. Even if you did all that I believe the results would be negligible as the additional true power (watts) delivered to the motor would be small.
Don't get fancy. If you want more power use a larger motor and/or boost the battery voltage and cross your fingers.
A: The short answer is 'no' -- not with a two-channel radio.
You can have an active weapon that fires autonomously, but the weapon system must de-activate and become inert on radio signal loss. Section 4.4.1 of the RFL ruleset says:
I can't think of a way to accomplish that without a dedicated, failsafe weapon radio channel.
A: A lighweight with a spinner requires a coded FM or digital 900 MHz/2.4 GHz radio with failsafes on weapon and drive channels. The most popular radio for your needs is the Spektrum DX6i for its full set of features and low price. You'll probably want to select the Spektrum AR500 receiver to go with it.
Note: there is no R/C 'killswitch' on a modern combat robot. The current rules require the radio system itself to 'failsafe' to zero throttle and weapon power on loss of radio signal. The Spektrum DX6i conforms to this requirement.
A: Combat robots have the same need to combine R/C control signals so that the input from two sticks control two output devices in different ways. It is called 'mixing'.
Computerized R/C transmitters generally come with mixing options built in. You're looking for 'elevon mixing' (although technically you have a 'taileron'). Check your R/C manual to see if you have this option and how to set it up. If your radio does not have built in mixing, you can add an inexpensive stand-alone mixer between the receiver and the servos.
Flying a plane with this type of two servo set-up is not particularly easy; you only have elevator and aileron control, no rudder. To turn you have to roll the plane to one side with the ailerions, then apply elevator to 'climb' the plane into the turn. Best luck.
Thank you very much!
A: Mark J here: I'd suggest a Team Delta RCE220 Dual-Ended Switch in each robot. Hook each into channel 3 (throttle) on their respective receivers.
NOTE: if you're willing to take a couple of seconds to switch between model memories to switch robot control I think this can all be done with transmitter programming. No 'kill switches' needed and all ESCs would remain powered at all times. It's pretty sticky programming and I'll need to test it before I pass it on. Let me know if you're interested (and tell me which Futaba transmitter you have).
A: How many more channels do you need? You aren't going to get more simultaneous independent proportional control channels by post-processing the receiver signal. It is possible to 'piggyback' additional on/off control signals onto the existing channels (see VANTEC Hitchhiker KeyKoder) but this requires extensive modification to the transmitter as well as the receiver.
It is also possible to split a single proportional control channel to provide simple on-off control two (or more) devices (see: 'Team Delta R/C Dual-Ended Switch') but control of the two devices will not be simultaneous. Something similar to this could be done with microcontroller receiver post-processing.
A: I think I understand. You want to be able to plug two 7.4 volt batteries into your 'bot to produce 14.8 volts, right? I'm guessing you want to keep the batteries separate because your charger won't handle a 4-cell battery. Diagram at right.
Q: If you have two 7.4 volt 800 mAh batteries hooked up to make 14.8 volts, would that battery series hold 1600 mAh?
A: No. Two 7.4 volt 800 mAh batteries in series will give 14.8 volts with an 800 mAh capacity. Two 7.4 volt 800 mAh batteries in parallel will give 7.4 volts with a 1600 mAh capacity. You can get either double the voltage or double the capacity, not both.
I'm using an Axi 2808/24 running off of a 30A Esc for the active spinner, rotating a steel bar with dimensions 10" x 1" x 1/4". I'm planning on running on 7.2v giving 8568 RPM. With 20 spin ups I'm getting 0.16 [AH from the Run Amok spinner spreadsheet]. So total need 0.266 + 0.16 = 0.426 [AH]
Now I'm entirely clueless on how 'Continuous Discharge' relates to 'Max Continuous Current'. I thought the E-Flite 1500mAh 7.4V Double Cell 2S LiPoly Pack, 13g would cover my beetles needs but it's only a guess. Do you have any ideas on which battery would efficiently handle the robots power needs, and more importantly how you calculated which one was effective?
A: Mark J. here: you've done a great job using the appropriate tools -- the
Team Tentacle Torque & Amp-Hour Calculator and the Team Run Amok Spinner Excel spreadsheet -- and you've come to a spot where you're unsure about how to proceed. That's what we're here for!
First, let's clear up the 'Continuous Discharge' and 'Max Continuous Current' confusion using that 1500 mAh E-Flite LiPoly pack you mentioned. Continuous discharge for that pack is '20C'. The 'C' relates back to the capacity of the pack -- 1500 mAh. That pack can discharge at a maximum continuous rate of twenty times 1500 milliamps = 30 amps = maximum continuous current.
There are two main considerations in selecting a LiPoly battery pack: capacity and discharge rate. Capacity measured in milliamp hours (mAh) is needed to provide enough power to get thru a match. The discharge rate measured in amps must exceed the current used by the robot in order to protect the battery from damage caused by discharge heat. LiPoly batteries are very sensitive to heat damage.
The 1250 mAh E-Flight pack should cover your power needs with a good margin to spare. It has almost three times the power capacity you need, and the 25 amp continuous current rating exceeds the estimated requirement of 20 amps. Just don't bog down the weapon motor!
A: Mark J here: the main problem with overvolting a servo is the small ESC that controls the servo motor. When you raise the voltage you also raise the amperage the servo motor will draw, and that can fry the ESC when the servo is heavily loaded. I don't know how heavily you load the servo, but I do know that if I tell you to go ahead at 7.2 volts and the servo smokes you're gonna be ticked off with me -- so no, I can't say it's safe to overvolt it.
If you're running the receiver from a battery eliminator circuit (BEC) in your electronic speed controller, it's already regulated to 5 volts -- but a high-torque servo draws a fair amount of current and may overload the BEC. If the receiver is running direct from the battery, dropping the voltage correctly requires knowledge of the amps the servos draw under load, and I don't know what that number is for your application.
I guess my recommendation is to either find another way to get more speed or just roll the dice with the servo.
Q: Hi Mark, about the servo, could I coil up a bunch of the red wire leading to the electrical servo lead to lose some voltage? How long would I need it to get around 6 volts, when my initial battery charge is 8.4 volts? Thanks.
A: This is going to take a little explaining, but I would be lax to deprive you of a complete answer. Pull up a chair...
Adding impedance does not directly control voltage, it controls current. You will get a voltage drop from extra wire length, but the amount of drop will fluctuate with the relative values of your added 'constant' impedance and the highly variable impedance of the servo as its load changes -- see Wikipedia article on 'voltage divider' for the math. If you have enough impedance to reduce the voltage to 6 volts at low servo loading, you're going to get so large a voltage drop when the servo motor is heavily loaded that the electronics will stop functioning! No, adding impedance in an attempt to hold voltage constant is a poor approach.
There are ways to directly reduce voltage but, as pointed out previously, dropping the voltage correctly requires knowledge of the amps the servo draws under load. The venerable 7805 voltage regulator chip can provide a stable 5 volts at up to 1 amp from a DC power source as high as 35 volts. The problem: your high torque servo will most certainly pull more than 1 amp if asked to supply full torque. You could verify this with an amp meter.
All this brings us to one simple solution that does not require knowledge of the amperage draw: place a 'tap wire' into your battery pack, a couple cells short of the last cell in the pack. This tap wire will draw 6 volts from the first 5 cells in the pack to power the receiver and servo, while the full pack powers your drive motors. No calculations, no semiconductors to overload, just a clean 6 volts.
Don't worry about the actual 'peak' battery voltage. When a servo says it has a max voltage of 6 volts they are allowing for a little higher voltage from a freshly charged 5-cell NiCad/NiMHd pack.
A: Combat robots typically use solenoid-operated air control valves that open and close electricaly, with an R/C switch interface to allow remote operation. The Team Da Vinci Understanding Pneumatics page gives a good overview of combat robot pneumatics.
I'd like to know if you recommend a dual motor h-bridge that can use i2c or should I just hook esc's to the pwm ports? I'm not entirely sure what the difference is between an esc and h-bridge, other than an esc has safety mechanisms. Being a 3 pounder I'm trying to watch my weight.
I'm planning on 2 drive motors that put out about 5-6mph on maybe 6" wheels, maybe the [BaneBots] 28mm Planetary Gearmotor, RS-385 Motor (not sure the right ratio but I'm sure the calculator you provided will. Which is fantastically helpful btw!) Maybe around 20 Amp stall amperage?
A: Mark J. here: I'm a fan of the educational and recreational aspects of building your own electronics, but I have to point out that there is precious little advantage to doing so when building a combat robot. I've seen many homebrew radio systems and speed contollers, and there wasn't one of them that I liked as much (or that performed as well) as standard off-the-shelf products. A combat arena is a hostile and expensive place to find the weaknesses of your electronics design.
First, check with the event organizers of tournaments in which you expect to compete to see if they are even willing to consider allowing a homebrew system. There will be concerns about interference and failsafe requirements so be prepaired for a lot of questions, skeptical frowns, and extra scrutiny from the tech inspector. Note that failsafe requirements are different if you plan on an 'active' weapon - see #18. Be aware that event organizers may overrule the RFL radio recommendations.
Let's sort out the difference between an H-bridge and an ESC:
The
Team Tentacle Torque & Amp-Hour Calculator
will give you a maximum expected amperage draw based on your motors, voltage, gearing, weight, and wheel diameter. You only have to worry about stall amperage if the motors actually stall, which a properly designed drivetrain should not allow. There are multiple posts on ESC selection in the archive.
A pair of BaneBots 36mm 20:1 RS-385 gearmotors at 7.2 volts in a beetle spinning 3" wheels will give a top speed near 7 MPH in a small arena and will break the wheels free in a dead push at less than 3 amps each. If you're tight on weight, the BaneBots 24mm 20:1 RS-370 gearmotors weigh 35% less (3.3 oz. vs. 5.1 oz. each) and will provide comparable performance. A five amp dual-channel ESC should do fine for such an application and can weigh well less than one ounce.
My team travels with a steel pot with lid, welding gloves (to the elbow style) & a small (3 lb) ABC fire extinguisher. Assuming safe handling/ charging practices (OK some would say LiPo & combat is inherently unsafe, but that to one side for the moment), are we correctly equipped in case of a fire?
A: Mark J. here: thanks for the kind words! As chief battery officer for the team, I'll take this one.
You're much better equipped to handle a LiPoly battery fire than most teams. Manufacturers recommend charging LiPoly batteries in a fireproof container with an ABC dry chemical fire extinguisher handy. You have that covered, and the welding gloves could certainly be useful. I'd be just a little worried about the lid blowing off your steel pot -- LiPo ignition can be fairly violent.
You are right to treat LiPoly batteries with respect. An improperly charged, damaged, or too-rapidly discharged (shorted) LiPoly can burst into flame. YouTube has plenty of videos of this happening. Typically there is a ball or jet of smoke and flame from the ruptured pack which may propel the battery some distance, so just placing the battery on a fireproof surface won't do -- it needs to be contained.
If you do get a fire, use a dry chemical extinguisher or just back away if it can burn safely. There may be multiple flame-ups as individual cells ignite, so it's best to stay back and deal with it from a distance. Do not use water on a LiPoly fire! Sand will smother the fire effectively if a dry extinguisher isn't available.
If you're tired of hauling around that steel pot, there are specially designed bags for charging and storage of LiPoly batteries. They're easy to pack, are less likely to short out your charger if something goes 'poof', and the lid won't blow off.
Always charge your Lithium battery with a correct lithium battery charger, never use a 'puffy' battery (indicates damage and gas release), and do observe safety protocols. Read thru the Great Planes LiPoly manual for safe handling practices.
A: Read thru this archive for suggestions on suitable combat robot radio systems.
The Electronic Speed Controller (ESC) determines the current your electrical system can handle, and the ESC is a separate item from the R/C radio. Any hobby radio system can be used to control any ESC that has a standard R/C interface. The capacity of available ESCs ranges from 2 amps to well over 300 amps. Information on ESC selection is also in this archive.
A: No. The reciever receives the radio signal and translates it into a coded series of low power pulses. The ESC interprets these pulses into speed and direction information and supplies high current to the motor. You need both pieces!
A: We've said before that no matter what type of robot you're building it makes very little sense to purchase a 'cheap' radio system. If you continue to build robots you will soon want to upgrade your radio and will find that the resale value of that cheap radio is small. Buy a good radio system and your robot will benefit from the improved performance and your wallet will benefit from better resale if you do need to sell.
I'd recommend a full-featured DSM 2.4 Ghz system with a display screen and full failsafes. Such a radio meets all performance requirements for all weight classes. The popular Spektrum DX6i transmitter with BR6000 receiver is an example.
A: That's exactly how the failsafes on the BR6000 receiver function - all channels are driven to a pre-programmed position on loss of transmitter signal. You can set the failsafe position wherever you like: see Spektrum's BR6000 failsafe position instructions.
The AR500 receiver would only failsafe channel 3 to its programmed position and would send no position information to the other channels. Other manufacturers have different options on failsafe positioning, but your Spektrum is working as designed.
A: Mark J. here: first, check to make sure your receiver needs to be fed no more that 6 volts. Some receivers - Spektrum, for example - can handle 12 volts or more.
Second, many ESCs have a built-in voltage regulator that will supply a nice safe 5 volts to the receiver thru the servo lead with no direct battery connection needed. If your ESC has such a Battery Eliminator Circuit (BEC) you will neither need or want to supply power from an additional source.
You can use a zener diode as a voltage regulator by placing the zener diode in parallel with the power terminals of your receiver with a current limiting resistor upstream. You may have to fiddle with the resistor value to get proper regulation. A better and more stable solution would be to use an inexpensive 7805 voltage regulator chip.
A: It's best to have all the cells at a similar state of charge when the pack is assembled, but a long and slow (~50 mA) 'trickle charge' of the pack will bring all cells up to full if there is an imbalance.
A: Sure. The Speed 100 Electronic Speed Controller has a built-in Battery Eliminator Circuit (BEC) that regulates the voltage fed to the receiver down to a safe 5 volts regardless of the battery voltage. Your lifter servo is plugged into the receiver and is operating off this same 5 volt feed. To get full battery voltage to the servo you'll need to disconnect the positive power wire from the servo plug (the red wire on most servos) and patch it into the positive lead from the battery. The signal and ground wires remain plugged into the receiver. This will bypass the BEC for the servo and leave the receiver at 5 volts.
Q: So it would be fine to take off the servo pin, cut the individual pin off the red wire, strip the end, and put it in the screw terminal [on the Ant 100] with the other red battery connector? It wouldn't cause any shorts or anything? Thanks.
A: Mark J. here: yes, you've read the diagram correctly. The receiver uses the 'signal' and 'ground' wires to communicate with the servo controller - which is actually a very small ESC. The red 'power' wire supplies positive 'juice' to the servo controller and motor, which also use the ground wire as a return path to the battery. The ground is continuous and unregulated thru the receiver and back thru the ESC to the battery -- no shorts, no conflicts. Assuming that your servo can handle 7.2 volts, you're home free.
P.S. - Aaron is sulking because you didn't believe him, but we both understand that it's better to ask than to watch your electronics go up in smoke.
A: Mark J. here: in early 2009 Spektrum discovered that a few specific production runs of their DX6i transmitter had bad stick potentiometers. The affected date codes and instructions for returning those transmitters for service are listed at the Spektrum website. Anything you buy now should be fine, but check the date code on older transmitters.
A: See Zpatula's page - at the bottom. See also a diagram in #19.
A: We used the Team Delta RCE220 Dual Ended Switch to control the lifter on Zpatula. It's overkill for a beetleweight, but there was room in the chassis and we had one in our parts bin.
The lifter is built to operate with the motor running in a single direction, but it is much better to use a bi-directional (forward/reverse) motor controller for quicker and more predictable response. The RCE220 can be connected as a bi-directional 'H-bridge' and has special input connections that allow the use of 'limit switches' to stop the motor when the lifter reaches maximum and minimum height. This makes control of the lifter much simpler.
The lifter is also built with a 'slip clutch' that limits torque and prevents the motor from stalling. You will want to lock-out this clutch to allow full lifting power, but this may cause the motor to stall under heavy lifting. The stock motor consumes about 2 amps when stalled @ 6 volts. If you use an ESC to control the lifter you'll want one with at least that much peak capacity. Something like the FingerTech tiny ESC could be marginally adequate to control this lifter motor up/down. The RCE220 we use is rated at 12 amps.
A: Mark J. here: that's not a simple question and I cannot answer it in a short paragraph. I'd suggest you start by reading the article describing the Spektrum DSM technology at the Spektrum website.
A: Mark J. here: This is the Exceed 2.4GHz radio offered under another name. I have reviewed this radio previously -- search for 'Exceed' in this archive. Fingertech claims that their 'tinyESC' will correctly failsafe with this radio, but I'm not sure which other ESCs will failsafe properly.
A: Building your own speed controllers? The output of an R/C receiver is a pulse width modulation providing a 4 to 6 volt 'high' signal for a length of 1.0 to 2.0 milliseconds on a 20 millisecond cycle. A detailed description of the signal and an example of interfacing can be found at Chuck McManis' website.
A: Sure - the Spektrum DX6 is a full-function transmitter with all the bells and whistles. Spektrum calls it 'Travel Adjustment' but it's the same as ATV.
A: A puffy LiPo is a bad LiPo. Heat is a LiPo's worst enemy. It's toast. Do not try to charge it - charging a damaged LiPo can cause a fire or small explosion. Dispose of it properly (see instructions in the archive) and go buy a new one.
A: This info is widely available on the 'net, so I'm not going to repeat it here.
A: Mark J. here: we've warned people off of the Exceed 2.4Ghz radio in earlier posts. The last place you want to 'go cheap' is on your electronics. The radio is manufactured in China by a company called 'Fly Sky' and is marketed under several names. It is (IMHO) entirely unsuitable for use with combat robots.
A: I suspect that your robot is moving 'forward' because your test area isn't level and it's actually moving 'downhill'. There are several posts in the archive about 'meltybrain' systems to get controlled movement from thwackbots. You'll spend a WHOLE lot more money trying to get meltybrain to work than you would on a top-flight FM radio.
A: Yes - I'm not a fan of the Exceed radio system, but the receiver has standard outputs that any R/C component can plug right into.
A: The Lithium Nano batteries have a very high discharge and recharge rate, as well has high energy density. Drawbacks are the need for a specialized charging system and a bulky cylindrical shape -- too bulky for use in most insect-class designs where the high energy density might best be used.
A: I'd suggest that you pay the extra $5 for that LiPoly pack you found at BatterySpace and stop wasting your time (and mine).
A: Mark J. here: if the lifter servo is digital, yes. If the lifter servo is analog, maybe/maybe not. There is a certain amount of 'interpretation' here.
The Sabertooth ESC with the failsafe DIP switch turned on will take care of the drive motors, but the AR500 receiver sends no signal at all (except on channel 3 - see below) when it looses contact with the receiver. A digital servo will freeze in place when this happens, but an analog servo may creep. Technically it wouldn't be in compliance and a picky tech inspector may call you on this.
The AR500 will failsafe channel 3 to a pre-set position on signal loss. A servo lifter controlled by channel 3 would snap to the pre-set position. The rules say that all motion is supposed to stop with signal loss but interpretation of this rule can vary from event to event. I would suggest contacting the organizer of the event you plan to enter for their opinion.
Q: Could you recommend a digital servo under $50 with 100 oz/in at 5 volts?
A: I can come close: the Hitec HS-5645MG Digital High Torque servo produces 143 oz/in of torque at 4.8 volts. Metal gears, 2.1 ounces, $54.99. There are some no-name chinese digital servos well under $50, but I woudn't use them. You'll forget about spending the extra money a lot quicker than you'd forget about a cheap servo failing and taking you out of a tournament.
A: The INDI 16X705 charger is an all-in-one charger with a built-in power supply -- no external power supply needed. I've seen mixed reviews for Integy chargers, but the list of features and price are tough to beat. The charger comes with a standard Kyosho connector, but you can take it off and put on anything you like.
A: I'll assume that you have a charged battery in there someplace that delivers between 6 and 18 volts. Take a look at the wiring diagram in #16 to make sure you've got everything hooked up correctly, and double check battery polarity. Try unplugging the servo -- the battery eliminator circuit on the Sabertooth may not be providing enough current to operate both the servo and the receiver. If it works without the servo you likely need a separate high-current BEC.
A: See the wiring diagram in the #19.
A: Largely useless for robots. It has a very low power output and does not meet robot failsafe requirements.
A: Servos are 'neutral timed' for equal speed and torque in either direction.
A: Twisting pairs of wires together is a well known technique to reduce transmission or reception of radio frequency signals. See the Wikipedia article on
The Spektrum BR6000 receiver is really two receivers in a single package, each operating on a different frequency. The two antenna wires on the BR6000 receiver lead to a separate receivers inside the housing. Twisting the antenna leads around each other forms a 'twisted pair' that may interfere with reception. Keep the antennas away from each other and away from other electronics.
A: Mark J. here: I strongly recommend against going cheap on your electronics -- particularly on your R/C gear. It would be false economy to save a few bucks on the radio only to get washed out of a tournament when it glitches. I don't see any mention of failsafe capability for this system and it's anyone's guess if it is compatible with Spektrum receivers. Don't do it.
A: Mark J. here: three possibilities:
Q: The racing battery pack is a Duratrax DTXC2146 7.2V 42000mAh HiMH Battery. It is about 6 months old,and I have a Duratrax IntelliPeak Pulse Charger. My robot isn't really a robot, its an old Tamiya King Tiger tank with clutch mechanism. I'm not sure what motor it has, but the motor is about 2 inches long and 1 1/4 inches wide. I am peak charging the battery at about 2 amps. THANKS!
A: It's unlikely that your motor could be sucking down enough amps to drain a 4200 mAh pack in 20 minutes. Make sure there is no binding in the drive mechanism, but I suspect a battery problem.
NiMH packs can be damaged by recharging while still 'hot' from a recent rapid discharge. 'Old' refers to the number of charge/discharge cycles the pack has been thru, not just it's physical age. The Duratrax charger does not display the amp-hours put into the pack during the charge, so it is of no direct diagnostic help. Still, a 2-amp charge rate should take better than two hours to fully charge your drained pack -- is that about how long it's taking?
Try charging the pack at 1 amp and letting it drop into automatic trickle charge mode overnight. If that doesn't give better results I think it's time to buy a new pack.
My soldering iron is a Weller soldering station with a 42 watt heater and all sorts of tips. I've tried narrow screwdriver-shaped tips that Weller says will heat to 600 and 700F (depending on the tip), and have had only moderate success so far. The solder is rosin-core, I think the alloy is 60SN, if that makes a difference.
No trouble soldering PCBs, but the wire is giving me fits. At best, I get a shoddy coating of solder on the wire, and it doesn't seem to soak up the solder like I think it should. I have 18, 16, and 12 gauge wire yet to solder, and I'm afraid to even try it. Any advice? Is my equipment too wimpy for the job? [Dave B.]
A: Mark J. here: your equipment is more than up to the job, Dave. What you need is some paste flux. Dip the end of the wire into the flux to coat it. Apply a tinned iron and the solder will soak into the wire like water into a damp sponge.
The battery was only shorted for a moment (maybe one second). It did get pretty warm, but not hot. What are the chances that I damaged my battery? Do you think it would still be combat worthy? The robot is yet to be completed, so I won't be able to test the battery for awhile. [Dave B.]
A: Mark J. here: everybody gets a case of the dumbs now and again, Dave.
LiPolys do not appreciate being shorted. Examine the battery casing: it should be taught and flat. If there is any bulging or 'inflation' the battery has been damaged and is unsafe to use. If it looks OK I'd put it on a heat-resistant surface away from flammables and run it thru a couple of charge/discharge cycles. If it behaves normally, run it.
A: Most computerized transmitters have a menu page to swap modes. The DX6i has one, but it's undocumented and really well hidden:
A: Mark J. here: I suggest you read the Run Amok Guide to Combat Robot Gyros for details on mixing and gyro inversion. Briefly:
Q: Thanks Mark. Could I have two gyros and use the spare chanel to switch between the one for right side up and the one for inverted with two transistors spliced into the logic cable? As an alternative, could I use the "Remote Gain Dual Mode Heading Lock Gyro MS-044"?
A: Are you all that sure that your 'bot will need a gyro at all? I'd suggest trying it before going to a gyro.
I don't like the 'two gyros' idea. If you want to try something unusual, how about mounting the gyro on a tiny servo and rotating it back upright when you invert?
The MS-44 manual does talk briefly about 'gyro sense reversal', but this will not correct the 'death spin' problem. Helicopter gyros simply never face the same problem as a skid-steer robot - when inverted, helicopter direction controls reverse and the gyros are designed for that.
A: Hi again, Anthony. I'll be glad to help, but I need to know more about your robot and where you are in setting up the electronics. I also neen to know how you'd like to have the controls set up: do you want to have forward/back and left/right on one stick or have throttle and steering on different sticks? Would you rather have independent throttle for the two sides of the robot on two sticks (tank steer)?
You can get information on some of the set-up options in the Run Amok Transmitter Programming Guide. It was written for a Futaba radio, but you have most of the same options on your Spektrum. For a little help in wiring up the receiver and your ESC, see the wiring diagram in the #19.
Write back and let me know what specific help you need. Oh, and tell me if your Spektrum is Mode 1 or Mode 2.
Q: My robot uses three channels -- 2 for drive and one for weapon. It is an antweight with a vertical saw and two hacked Hitec servos for drive. I want tank steer and my transmitter is Mode 2. My electronics are already set up. What ports do I plug these parts into? Thanks for your help!!!!!
A: OK, Anthony - tank steer is the simplest control system to set-up, but your left control stick does not spring-center like the right stick. You will need to modify the spring centering system by opening up the case and transferring the spring assembly from the left-right axis to the up/down axis. Tricky, but some help with this can be found in the Spektrum DX6i Physical Adjustments manual. A web seach will find video help as well.
Once the receiver is 'bound', you can check the control response. Each drive motor should spin 'forward' when it's stick is moved forward and 'backward' when the stick is pulled back. They should not move at all when the sticks are centered. You can adjust the 'no movement' point with the channel 2 (elevator) and 3 (throttle) 'trim' adjustments (see your manual). If direction response is reversed, it can be corrected by the 'servo reversing' function (see your manual). Likewise, if the weapon motor is 'on' with the switch in the 'off' position, use servo reversing on channel 5 (gear). If the weapon motor spins backward, reverse the power leads from the ESC.
That should get you rolling, Anthony. Take it off the block and drive it around. Leave the weapon disconnected outside safe containment - PLEASE!
A: I'm not sure I understand the question. If you are trying to use the Battle Switch like an ESC to control a weapon motor, the switch and motor system should be connected to the battery in parallel to the drive ESC. Connecting the weapon switch and motor to the drive ESC battery connections would be OK. Wiring would be similar to the wiring diagram in the #19.
Team Delta also makes R/C switch interfaces. Theirs have built-in radio fault failsafes.
A: The device labled 'removable Power Link' in the diagram is the master switch. In large robots this switch is usually a 'removable link' for safety purposes. A removable link is just a connector with one side shorted by a loop of wire -- pull the connector apart and the circuit is broken.
Smaller class robots can use a simple single pole single throw (SPST) switch of suitable capacity, or you can make a removable link out of a small connector. Some form of master power disconnect switch is required by all current rulesets.
See also the wiring diagram in the #19.
A: A Futaba connector is not suitable for high amperage connections -- it's only good for about 3 amps. Replace the Futaba connector with a Deans Micro Plug and run wires from the plug to the Sabertooth screw terminals. Connect the weapon ESC power leads to those same screw terminals and you're in business.
Can't solder? Now would be a great time to learn.
A: Probably not, but you haven't given me enough info to say for sure. Several different problems can trigger a shutdown and give you the red error light.
The first thing I'd check would be the battery. If it's lithium the #3 dip switch should be down, if not the switch should be up. If the battery does not have enough output capacity to deliver full amperage to your motors the supply voltage will drop and the Sabertooth may shut down. Fully charge the battery and try again. If no joy, test the setup with a larger battery (or smaller motors).
Make sure the other dip switch setting are right, and double-check all the connections to make sure they are correct and tight.
Q: I have the dip switches set right. The only thing I connected wrong was the pigtail servo lead off the 5v side of the ESC - I hooked the ground wire to the S2. Plenty of bats.
A: Mark J. here: you didn't think it was worth mentioning that the receiver was incorrectly wired when the ESC failed? More info needed:
Check the 5 volt power supply from the ESC with a voltmeter. You may have cooked it when you wired the receiver incorrectly.
- Dip switches 1 and 4.
Assuming that you mean that 1 and 4 are 'off' (down toward the numbers) and the others are 'on', that puts you in R/C mode with no mixing. That's fine...
- Battery is 12v lead acid, 7.2 AH
A single 12 volt battery -- OK.
- Craftsman 19.2 drill motors.
Whoa! Even at 12 volts those motors will pull more amps than the 'peak' output rating of the ESC if loaded down near stall. At 24 volts they'd pull a whole lot more. I wouldn't try to run those motors on a Sabertooth 2X25 -- it's gonna overload and shut down anytime the motors are pushed.
- Futaba R606FS 6 channel 2.4.
Should be fine...
- Pig tail was connected to receiver.
OK, but you told me that the ground wire was connected to 'S2' on the ESC. To what were the other two wires (signal and power) connected?
- [Update] Signal to 'S1' and power was connected to the 5V.
From the dip switch settings I'm assuming that you're doing mixing in the transmitter. Grounding the 'S2' input to the ESC should have done no harm, but you would have had no steering.
- All the lights on receiver work.
Good...
- No lights on ESC work.
Not good...
- It has exactly 5v on ESC.
OK, no lights on the ESC has convinced me that there has been a failure in the Sabertooth. I think it's a poor choice to control those motors -- it's going to shut down everytime the motors are put under any real load. Still, the claimed overload protection should have kept the ESC from frying during your very short test. Get in touch with Dimension Engineering and give them all of the information you've given me. They may replace it under warranty or offer repair service, but I wouldn't use that ESC for those motors.
Q: The drill motors have the factory planetary gearing then geared down 4:1 gearing on top of that. Will that make any difference in the amount of amps it would be? Does that effect it at all? Trying to not spend $500 on a Vantec. BTW Thanks for all the help.
A:This project sounds like something other than a combat robot.
The amperage draw of the motors will depend on the voltage, gearing, wheel diameter, vehicle weight, and the resistance the vehicle is encountering. You can use the
Team Tentacle Torque & Amp-Hour Calculator
to approximate the amperage draw when the vehicle is pushing full force against an immoveable object. This is a common condition with a combat robot, but maybe not for whatever you're building.
The Craftsman 19.2 volt motor/gearbox is not one of the motor choices available on the Tentacle Calculator, but you can use the 'DeWalt 18v Low' motor selection as a reasonable stand-in. Enter your 'Operating Voltage' (12), Robot Weight (fully loaded - ??), Wheel Diameter (??), and Gear Ratio (4:1). Leave the other values at default. The 'Amps (per motor) to spin wheels' output will give you the maximum expected amperage draw.
Robot builders generally make sure their ESC can deliver their maximum expected amp demand for a good long time. Buying a $500 ESC that meets your requirement is a lot cheaper than buying a succession of marginal ESCs that keep failing and knocking you out of tournaments. Happy robot builders do not go cheap on their ESCs.
Q: You are correct sir, I'm actually building a 1/10 scale D9 dozer. I know you don't deal with these models, however it's very similar to a robot and you are the only one that I've found that knows what I need to do. So here is what I have:
A: OK, now that I know what we're working with I can be of more help.
Track and blade size are not factors. I'll guess that the diameter of the tread drive sprocket is about 4": that gets entered into the calculator in place of wheel diameter. Plugging all that in, I get a peak amp draw of only around 6 amps when pushing hard with the treads spinning for traction. You might pull more amps working in thick mud or another surface where the treads could really dig in -- I don't know exactly what dozer modelers do with their toys. Top speed is about 1 MPH.
If this were a robot, I'd convert that excess torque into speed, but the slow speed will be realistic for a model dozer. The added advantage is that the projected amperage draw is well within the capacity of the Sabertooth 2X25 ESC.
We still don't know what blew out your ESC during the test, but let's chalk that up to some hidden defect. Get the Sabertooth repaired and you should be fine.
Q: Mark J, YOU ARE THE MAN!!!!! I appreciate all the help. And I know that in the future, I can count on you. Is there anyway that I could send you a pic of what I'm building?
A: Happy to help. I've advised all sorts of non-robot projects here -- small trains, camera booms, electric bicycles, automotive interiors -- but this is my first mini bulldozer. I'd like to see a picture: send me your email address (I won't publish it) and I'll contact you.
A: First, it's hard to argue with the record Team WhoopAss has put together. If something is on their robot, it's there for a reason.
Hexy Jr. was built during the BattleBots era when IFI Robotics controller systems were the rage. Most of the odd electronic bits, including the custom controller board, were for the IFI radio system. You wouldn't need all that with the current radio systems.
The other things I see on their parts list are standard items for a well designed pneumatic weaponed 'bot. They did it right.
A: The Spektrum FAQ says that their AR6000 receiver draws about 40 mA -- the BR6000 should be the same. If you need to peg the consumption more precisely just supply the BR6000 with 5 volts and monitor power consumption with an amp meter.
Note: a receiver passes power to servos and gyros (but not ESCs). If you have such devices plugged in to the receiver you'll need to measure power consumption with everything installed and under simulated load.
A: We've always used Deans connectors on our sub-light robots and we've never had a problem with them. The new Deans 'Micro Plugs' should be fine for a beetle.
A: It's good to be cautious with voltages applied to radio systems. Some receivers are more sensitive than others, so always consult the manual when going outside the normal range. Spektrum says that all of their Digital Spectrum Modulation (DSM) receivers have an operational range of 3.5 to 9 volts, so you should be fine at 7.2 volts.
The BR6000 receiver can and should be used with either the DX5e or DX6i transmitters. It has full fail-safe features that are required in most weight classes and weapon options.
A: Not recommended. If you connect the batteries in series, the weaker battery will drain down before the other and current flow will try to reverse-charge it. At best this could damage the discharged battery and at worst it could burst into flame. Connecting them in parallel would be safer, but I think I'd avoid the whole thing.
A: What does this have to do with combat robots?
A: I'm not sure that I understand your question. NiMH cells in series can deliver as much voltage as you like, so I'm guessing you mean the voltage where the cell is effectively drained? The chart shows a typical voltage vs. discharge state for a NiMH cell. When fully charged the cell can provide a little better than 1.3 volts under load. By the time it gets down to 1.1 volts it's pretty much drained. The discharge rate and cell temperature will impact the discharge curve.
A: Lithium batteries are picky about storage conditions, but Nickel Metal Hydride cells aren't. Store them at room temperature and give them a charge once a year. They'll loose charge during storage, but a couple of charge/discharge cycles and they'll pop right back to full capacity.
A: Mark J. here: that's the joystick set-up I like to use. It's possible to set-up the Sabertooth to give you left/right and forward/back control on any sticks you like. For left stick throttle, right stick steering with a mode 2 Spektrum:
A: Mark J. here: Li-ion batteries do irreversably lose capacity as they age, whether they are used or not. The loss is greatest when the cells are fully charged and at high temperatures. For best results drain them to about half capacity, seal in plastic bags, and store in your refrigerator. This will cut your loss by about 90% compared to fully charged batteries at room temperature..
Alternate solution: sell them to somebody who can use them now.
A: Mark J. here: DeWalt drill motors spin faster counterclockwise than clockwise because the brush timing has been advanced to improve efficiency when spinning counter-clockwise. Used in a robot, the left-side motor will run a little faster than the right-side motor and the 'bot will curve to the right rather than go straight under full power.
A peizo gyro is used in an R/C system to detect turning movement that has not been initiated by the R/C transmitter. When such turning is detected the gyro modifies the output of the receiver to correct for that movement. Peizo gyros were developed for R/C helicopters to monitor the action of the tail rotor and keep the chopper pointed in the right direction, but they can be very handy in specific robot applications as well.
Back to your question: yes -- since the turning of the robot happens without R/C turning input a heading-hold type peizo gyro would sense this as 'drift' and would correct the turning motion by reducing power to the left-side motor.
A: No clue.
A: Receivers do not 'supply' voltage -- they pass on the voltage from the source that powers them. The Battery Eliminator Circuit (BEC) of a typical Electronic Speed Controller (ESC) provides 5 volts. The Spektrum receivers can operate directly from a power source as high as 9 volts and would pass that voltage directly thru to the receiver power output line.
A: Take a look at the removable crystal for the transmitter and/or receiver. They should both be labeled with a frequency channel number. If that channel number is between 61 and 90 (75.410 to 75.990 MHz) then the radio is 75 MHz ground frequency. If the Transmitter is not 75 MHz, a 75 MHz receiver will not work with it -- they have to match.
A certified technician can retune a Futaba radio from 72 MHz to 75 MHz, but it would be less expensive to buy a radio on the correct frequency band to start with.
A: The 'Spektrum DX5e' is brand new and I have received no feedback from robot builders, so I cannot make a recommendation. I can tell you that it is a very basic 5-channel transmitter that lacks many useful features that make a robot much easier to set up and more comfortable to drive.
Q: What features does it lack compared to the DX6?
A: The DX5e has few features compared to the fully computerized DX6. Some examples:
Q: Could you use the DX5e with the BR6000?
A: Yes, and you should use the BR6000 receiver for the full failsafe features. The AR500 receiver does not correctly failsafe for robot applications.
Q: You can buy the DX5e on 'Mode 1' or 'Mode 2'. What does that mean?
A: There are two 'standard' ways that input channels are assigned to the two control sticks. Mode 2 is the U.S. standard with the elevator channel assigned to the vertical stick axis on the right side of the transmitter. Mode 1 is the European standard and has the elevator channel on the left stick. Computerized transmitters generally allow you to switch between modes, but the DX5e doesn't so you have to pick.
If you're going to use the included 'elevon' mixing and want 'single stick' control of throttle and steering on the right stick, pick Mode 2. Elevon mixing in Mode 1 will give you throttle on the left stick and steering on the right. More information on modes and mixing can be found in our transmitter programming guide
Q: Does the DX5e have a low battery light or something?
A: Yes, that's covered in the DX5e manual. See page six, and read the rest of it while you're there.
A: Yes, but I'm not sure why you'd need to. If you're short on space, it would be easier to take the connector plugs apart and plug in the individual wires.
A: Sure -- just keep the total length as close to the original as possible. Search this archive for 'original length' for a full discussion.
A: Lithium batteries are very sensitive to abuse, and an abused lithium battery can burst into flame.
A: The whole difference between digital and analog servos is in the electronic controller board inside the servo. Digital servos have a microprocessor on that board that can process the signal from the receiver and send more precise, quicker control information to the servo motor. If you're flying a helicopter this is important. If you're powering an ant lifter or hacking a servo for a drivetrain, you'll never notice a difference.
A: Spektrum DX3R.
Q: What inexpensive 3 channel 75 MHz transmitter would you suggest?
A: The 75 MHz band is on the way out. If you buy an inexpensive 75 MHz radio you're going to need to upgrade soon and nobody is going to want to buy your outdated R/C system. Buying the Spektrum radio will save you money and trouble in the long run. I've said before, I don't recommend scrimping on electronics.
Q: What do you do if you are using the Inertia Labs chassis, but the Spectrum BR6000 receiver is to big to fit inside?
A: I'd make a new cover for the chassis to fit the BR6000, but I have a feeling you aren't going to be happy 'til I give you the name of a 3 channel 75 MHz pistol grip system. We don't use pistol grip transmitters, but if I wanted an inexpensive 75 MHz pistol system exclusively for antweight use I'd go with the Futaba 3PM.
Q: Are there any 2.4 GHz receivers that are the size of the GWS micro receivers? It is supposed to fit in the Inertia Labs chassis.
A: Although not as small as the GWS pico receiver, the Futaba R603FF receiver that comes with the 2.4 GHz version of the Futaba 3PM pistol grip system is 1.5" by 1" x 0.55" and will fit in the Inertia Labs chassis next to the Barello ESC. I recommended the Spektrum system over this Futaba because I don't know any robot builders who have used the Futaba 2.4 GHz systems, but the specifications look great and it is less expensive than the Spektrum.
Q: Would you suggest the 3 channel 75 MHz Hitech Aggressor SRX-3 for a inexpensive antweight transmitter?
A: There are two different 75 MHz Hitech Aggressors: AM and FM. The AM Aggressor is very cheap, but combat robots create a lot of electrical 'noise' that interferes with AM radio. AM radios are not allowed for robots with active weapons, and not at all in some competitions. I cannot recommend that you purchase an AM radio. The FM Aggressor is more expensive than the Futaba 3PM and has no useful additional features. I like Futaba.
Q: Can the Futaba 3PM 3 Channel transmitter use a GWS micro receiver as the receiver?
A: No. The GWS receivers work well with 4 channel and higher transmitters, but there have been many problems reported by builders trying to use them with 2 and 3 channel transmitters. Something's different about the signal coding in transmitters with less than 4 channels.
Q: I'm thinking about using a Futaba 14MZ 2.4GHz Radio System for my antweight. I only have $80, and I can't find the price of the 14MZ. Can you tell me how much it costs and if its a good radio for me?
A: You can't find the price of the 14MZ??? I put "Futaba 14MZ" into Google and it spit prices all over me. Very nice radio, but a little out of your price range. Street price is about $2300.
We could have saved a lot of time if you'd mentioned your budget at the start.
A: Mark J. here: once again, Robogames has screwed up their ruleset with conflicting statements. We had the same problem last year. Section 4 of the Robogames ruleset says ants can use any approved ground frequency, even AM radio. It says ants require no drive failsafe. It says ants do not require coded radio as long as their weapons will failsafe. It also says:
This effectively restricts all weight classes to 2.4 GHz spread spectrum systems.
Last year, under the same confused ruleset, Robogames did let antweights compete with 75 MHz systems. It is unclear if that was a one-year exemption. I can only recommend that you write to Dave Calkins (dcalkins@robolympics.net) and ask for clarification. Let me know what you find out.
A: GWS offers both 4 and 6 channel systems. The Inertia Labs desciption of the GWS transmitter is messed up -- the title and picture are of the but the text describes the 6-channel GWT-6A. The price matches up to the 6-channel unit, but the receiver offered is 4-channel.
I'd suggest refering to Robot Marketplace and their GWS systems [no longer available]. Their descriptions are correct and their price for the equivalent transmitter and receiver package is the same.
The GWS radios are low-end, no frills systems. They do not have any computerized functions, mixing, or failsafes. Their only advantage is low price. I'm not a fan of skimping on electronics.
A: A big puff of smoke is always a bad sign. I'll assume you've tried hooking the receiver up correctly and seeing if it works? I wouldn't get my hopes up, but depending on which two pins you happened to overvolt it's possible that you just blew out one channel output. Try it. Even if it's fried, it probably won't be the worst mistake you'll make in robot combat. We've made some really big ones!
A: Mark J. here: the DX6i is compatible with the AR6000 receiver, although some people have reported problems getting the receiver to bind. Keep the transmitter at least 6 feet away from the receiver during the binding. It may take a few tries.
Repeat for each receiver. Your prior receiver programming should be intact.
A: An antweight with an active weapon requires an FM radio, and the weapon must shut down on loss of radio signal. The MicroBotParts and GWS pico receivers are both FM-PPM single conversion receivers, but FM-PPM radio systems do not themselves provide a failsafe. Check this: explanation of FM-PPM and FM-PCM radio systems.
Some weapon motor controllers, like the 'Team Delta Solid State D-Switch', have failsafe circuitry built in that is independent of the radio system. Alternately, several manufacturers make tiny failsafe modules that plug in betwwen the receiver and the controller. Either of these options would meet the weapon failsafe requirement.
If your old JR receiver provided correct failsafe, I'd suggest soldering a new antenna wire onto it.
A: A 'channel' has the ability to independently control one item on your robot, like speed and direction instructions for motor(s) on one side of the robot. Two channels could control motors on each side of the robot, and a third channel could control activation of a weapon. A single channel can control mutiple motors, as long as they are all doing the same thing at the same time.
Note that there are also two two basic designs for R/C transmitters: 'pistol grip' and 'twin stick'.
A: Mark J. here: good morning, and how are things in Mumbai? If I understand your request, you're looking for a circuit design to convert 12 volts to 24 volts to power a relay. I'd rewind the relay for 12 volts, but if you want to do it the hard way take a look at Harry Lythall's Practical Voltage Converter (archived).
A: Mark J. here: I hope you don't think that you can run your 'bot without a battery!
A battery eliminator circuit (BEC) is a voltage regulator or converter that takes the voltage from your main battery pack and reduces it to 5 volts to power the radio receiver. This allows you to 'eliminate' the separate battery pack for radio gear.
Most small electronic speed controllers (ESC) have a BEC built in. High quality stand-alone BECs are available for larger applications from multiple sources.
There is no set-up required for the built-in BECs; just plug your receiver into the ESC and connect the ESC to your battery pack. The ESC will feed power back to the receiver thru the 3-wire connector. The Team Delta units come with full instructions and require four solder connections.
Q: If a voltage regulator can take a larger voltage and bring it down to 5 volts, could it also take 24 volts and bring it down to 12 volts? That way I could run my 12 volt drive from my 24 volt weapon battery pack.
A: The bad news is that voltage regulators and converters are limited in the amperage they can provide. A radio receiver takes far less current than your drive system. A regulator with enough capacity for your drive would be very expensive, bulky, and heavy.
The good news is that you don't need a voltage regulator to run your 12 volt drive from your 24 volt battery. If your transmitter has 'ATV' (Adjustable Throttle Volume) you can set the transmitter to send a maximum 1/2 throttle signal to your drive ESC -- your drive motors will only 'see' 12 volts from the speed controller. As long as your ESC can handle 24 volts, you're home free.
Q: Do you have to put a gryo in a `bot?
A: Absolutely not. Very few combat robots use gyros, but many that are difficult to control would be better off if they did.
A: The only electronics from a Vex Robotics Kit that can be used with combat robot components is the R/C transmitter. Nothing else will interface with standard hobby electronics. Search for 'Vex' on this archive page for more info.
A: Mark J. here: I haven't had my hands on a new DX6i yet, but the DX6i manual (13.3 megabyte PDF) goes over the new features:
Q: I just wanted to let you know, the Robot Marketplace removes the AR6000 if you purchase the BR6000 receiver with the DX6. I'm not sure if this is the case with the DX6i, but it's likely.
A: It's a different deal. Robot Marketplace was able to substitute the BR6000 for the AR6000 receiver at no cost with the Spektrum DX6 system. The new DX6i system comes with the AR6200 receiver for $180, and for an additional $50 you buy the BR6000 robot receiver. For $230 you get both receivers.
A: The simple way is to bind the receiver to a new transmitter. That will unbind it from the old transmitter.
If you want to unbind without a new bind:
A: Mark J. here: the mixing instructions for the 9CAP at Mad Overlord assume that your speed controller has no mixing capability. You can set up either your 9CAP or your RDFR23 to mix, but not both!
A: Yes, but I don't know why you'd want to.
A: Mark J. here: electrical noise reduction is more of an art than a science. The optimum capacitance value varies with the RPM and load on the motor, so there is no single 'best' value for a combat robot application. Try 0.1uF as a starting point.
A: Sure. The problem comes if you try to use different battery types wired in series or parallel for a common current draw. Don't do that!
A: Mark J. here: all battery types have reduced amp-hour output under heavy current draw. How much reduction depends on the internal resistence of the battery and the discharge rate. Thunder Power claims very low internal resistence and very little reduction in amp/hour capacity at high current draw for their latest series of extreme performance LiPoly batteries (chart). The R/C helicopter guys say the chart is about right. Under combat robot loads, you can expect very close to the full rated power from a fresh Thunder Power battery pack.
A: There's no such thing as a free lunch. An AstroFlight 110D charger can pull up to 16 amps at full output. If your power supply can't pump out 32 amps then you can't run two 110Ds at full output, but you might get away with two at less than maximum charge rate.
A: Mark J. here: LiPoly batteries don't come in exactly 12 volts -- but then your lead acid battery wasn't exactly 12 volts either. The closest you can get in LiPoly would be 11.1 volts for a 3-cell battery. Two problems:
As for your second question, I don't know what you mean by a '500 watt rc'. If you are talking about R/C speed controllers, they are rated by maximum amperage draw and voltage. Again, you would need to determine the maximum amperage draw under operating conditions of the 500 watt motor you reference and match that to a specific speed controller.
A: Mark J. here: do not mix dissimilar batteries! Way too many things could go wrong and result in a battery explosion. I can't figure out why you'd want to mix SLAs and NiMHs.
A: You don't want a trickle charger for combat robot applications. Trickle charging simply supplies a very limited current at an appropriate voltage. Is is designed to charge a battery over a long time period or maintain the charge on a battery between infrequent uses. If your SLA is an automotive/motorcycle/marine type, an appropriate charger can be purchased at an auto supply store.
Note that some specialty SLA batteries do not respond well to trickle charging. Hawker batteries for example must be charged at a high initial amperage rate or they loose capacity. Check with the manufacturer of your battery for their charging recommendations if in doubt.
A: The Spektrum BR6000 receiver can be programmed to failsafe to any input position on any channel. Instructions for programming the BR6000 receiver are at the Spektrum website. If you program your weapon channel to failsafe to "off" position it will shut off the R/C switch controlling your weapon solenoid when signal is lost.
The Spektrum AR6000 receiver does not have full failsafe capacity and is not legal for robots that require failsafes on weapon and drive systems.
A: Do not switch the polarity of the servo - instant fried electronics. Almost all hobby R/C transmitters have a 'servo reverse' switch or function that will invert the servo direction. Use that! You can also buy a tiny 'electronic servo reverser' that plugs in between the receiver and servo -- websearch!
You can wire two servos in parallel and plug them into a single receiver output. Your local hobby shop can provide a 'Y-connector' for that purpose, or you can splice the wires yourself.
A: Mark J. here: Some readers may wonder why you want to do this. Servos can be 'hacked' to provide continuous rotation and used as drive motors. 'Overvolting' the servo will provide more speed and power at the cost of reduced lifespan. Many receivers and other R/C electronics, however, are very sensitive to increased voltage and can fail or malfunction if pushed to higher voltages. The trick is to run the receiver at a correct voltage while providing higher voltage to the servo.
A servo lead has three wires:
Note: although extensively used in the past, servos are inferior to other insect class drivetrains. I don't recommend them.
A: Gyros don't prevent the death spin, they CAUSE the death spin if they invert. See the gyro guide for info. I don't know of any event which has either required or disallowed the use of gyros.
A: Mark J. here: the inexpensive Gardner crimper is best used with the 30 amp Anderson Powerpole connectors. The contacts for the 15, 30, and 45 amp connectors are the same, so actual power capacity of the connectors are also the same -- about 100 amps. The difference is in the size of wire the connectors will accept. The 30 amp powerpoles will accept up to 10 gauge wire (really). You may want to solder the 45 amp connectors rather than trying to crimp them. See: this archived article for instructions on crimping with the Gardner tool.
A: Sure. Most teams have only a single transmitter that they use for all of their 'bots. One word of caution: at some large tournaments the insect classes run in a small arena at the same time that the larger 'bots are fighting in the big arena. In that case you may need a backup driver and a spare transmitter. Same deal if you have more than one 'bot entered in a single weight class -- you may end up fighting yourself!
Q: If you end up fighting yourself, can't you forfeit one of ur bots and still win?
A: Mark J. here: --- WEAK! ---
If you enter a robot in a tournament you should be prepared to fight it under any and all circumstances; if not for your pride then for the benefit of the spectators. Allowing such a forfeit would be at the discretion of the event organizer. I'd throw both your 'bots out.
A: If a radio system has failsafe capability, it will say so somewhere in the descriptive text -- it's a feature they want you to know about! AM and regular FM (PMM) systems generally do not failsafe. Coded FM (PCM or IPD), 900 MHz, and 2.4 GHz systems may failsafe.
Part of the problem you're having is that Robot Marketplace currently sells only one radio system under $200 that is full failsafe: the 'Spektrum DX6 2.4 GHz with BR6000 receiver'.
Note: All Spektrum 2.4 GHz systems failsafe, but systems with the AR6000 receiver fail to the last speed setting received from the transmitter. This is not legal for robot combat which requires drive and weapon systems to stop on signal loss. The Spektrum BR6000 receiver corrected this problem.
A: Mark J. here: lots of variables! Rule of thumb: a typical spinner adds about 40% to the capacity needed for the drive motors.
If you're determined to go thru some rough calculations, you can use the Team Run Amok Spinning Weapon Excel Spreadsheet to calculate the energy capacity of your weapon in joules. Each time the weapon is depleted and must spin up it will consume approximately:
Additionally, the weapon motor will consume some power just maintaining the weapon at speed. This can be very roughly approximated by:
Example: an Magmotor A28-150 motor spinning up a 10,000 joule weapon 5 times during a 3 minute match:
A: The current RFL rules require all robots with active weapons to have fail-safe electronics which will stop all robot motion if the radio signal is lost. Robots weighing 12 pounds or above must use FM radio with PCM or IPD coding, or digital 900 MHz or 2.4 GHz systems.
The GWS GWT-4A does not meet any of these requirements. It may be used for passive weapon robots up to 12 pounds, or for active weapon robots up to 6 pounds if add-on fail-safes are included.
Note that a few tournaments now require digital 900 MHz or 2.4 GHz systems for all robots. Check with the specific event organizer to be sure.
A: Yes. The 'Spektrum DX6' is a full-featured R/C system. It has multiple pre-set and custom programmable mixes and couplings built in. A full description is in the owners manual.
But then:
4.4.5. RC systems on the AM band are allowed at this event for robots up to 12 lbs with no active weapons.
4.4.6. All robots that are either: a.) 30 lbs or above or b.) 12 lbs or above with an active weapon MUST use a radio systems on the FM band with PCM, IPD coding, a digitally coded 900 MHz or 2.4GHz system (for example IFI), or an approved custom control system.
So, would I be able to use a normal FM system with my Antweight?
A: Mark J. here: From the discussion on the on-line forums, I think the intent is to require ALL combat robots at Robogames to run 'spread spectrum' radio systems -- sections 4.4.4 thru 4.4.6 should have been removed. However, I've always had trouble with Dave Calkins' logic. Write to him for clarification: dcalkins@robotics-society.org. Dave sometimes ignores his email, so 'cc' a copy of your question to Simone Davalos: simone@robotics-society.org.
Q: I talked to Dave Calkins. He told me:
A: Six words? I guess that helps a little, but it still leaves beetles, sublights, and AM radio uncertain. Robogames was once a popular and well-run event. I'm sorry to see it fall into confusion.
A: The AstroFlight 110D can charge up to 24 NiCad or NiMHd cells in series. That's a nominal 28.8 volts. A single 12 volt pack can be charged at up to 8 amps, but the maximum charge rate starts to drop above 14.4 volts. A single 24 volt pack (or two 12 volt packs in series) can be charged at a maximum 5 amps.
It's possible to charge multiple packs in parallel, but the charge amperage gets split between the packs. Two 24 volt packs charging in parallel would each charge at only 2.5 amps maximum. That won't save any time compared to charging each pack by itself.
If you need to charge higher voltage packs or multiple packs in series, pay a few extra dollars for the AstroFlight 112D. It can charge up to 40 cells in series (48 volts nominal), can pump 8 amps into a single 12 or 24 volt pack, and can charge two 24 volt packs in series at 4 amps.
You might also consider the ElectriFly Triton2 charger [discontinued].
A: Each time the transmitter is turned on it 'listens' to radio activity on the 2.4 GHz band, selects an unused channel, and transmits a code to the receiver to tell it what channel to use. Your 900 MHz or 2.4 GHz wireless phone works pretty much the same way.
More information at Spektrum R/C.
Q: So from what you're saying, the 2.4Ghz radio only works with the receiver it comes with? If not, do you have to sync it with a receiver?
A: When a 2.4 GHz receiver is used for the first time with a transmitter it has to be 'taught' the receiver's code in a process called 'binding'. You only need to do that once, and you can bind multiple receivers to the same transmitter.
A: For a start, browse:
Q: After seeing Team Tentacle's 'Thinkling' I've decided to go with the Baby Orangutan MCU and two Devantech SRF08 ultrasonic rangefinders. How do I wire all of this? Is there anything else I need for the electronics? Thanks.
A: Mark J. here: hold on there, Cowboy... I'd say you were more than a little ahead of yourself. Nobody who's ready to build an autonomous combat robot is going to write to me and ask how it all gets wired up. Even if you can get your sensors, MCU, motors, weapon (you're missing a weapon controller), and remote activation R/C (you're missing that, too) wired correctly, the robot is just going to sit there without software. How are your programming skills?
Sit down with a good book on autonomous robots, like Robot Programming: A Practical Guide to Behavior-Based Robotics by Joe Jones. Technical information on how to communicate with the SRF08 is at the Devantech website, and the Pololu website has links to documentation for the Baby Orangutang.
Once you're confident that you can 'wire up' and program the robot controller and peripherals, write back and we can discuss design issues and combat theory.
A: Mark J. here: it isn't quite that simple. AM systems are incompatible with FM systems. 'Negative shift' coding (Futaba, Hitec) is not compatible with 'positive shift' (Airtronics and JR). Some 'third party' receivers can use either shift pattern. If the transmitter and receiver have the same coding, operate on the same frequency band (27/49/50/53/75/900/2400 MHz), and use the same modulation (AM or FM) then yes, matched frequency crystals (75 MHz and lower) will probably make them compatible. The 900 and 2400 MHz radios do not use crystals.
Stick with a single manufacturer for transmitters and receivers and you should be OK.
A: For your first R/C system, you can:
The GWS GWT-4A has no fail safe capability, no channel mixing, no dual rates, no exponential response, no receiver battery pack, and it will require at least one extra set of frequency crystals for competition use. Just plain vanilla R/C. It's cheap to purchase (a little over $100, with listed options), but it's also gonna return little of the purchase price when you go to sell it -- and you're gonna need a better system as soon as you move up past the hobbyweight class or go to an active weapon.
For less than $200 you can purchase a system like the 'Spektrum DX6' with the BR6000 receiver. You'll get all the features you're gonna need for any practical combat robot in any weight class. It requires no extra crystals, has full fail-safes, three channel mixes, dual rates, exponential response, a receiver battery pack, and four micro servos that you don't need and can sell on EBay to further reduce the price. If you should decide that combat robots aren't your thing, you can sell the Spektrum for a good price to someone who made the $100 mistake of buying a cheap system for their first robot.
A: Sure -- the 2007 RFL Standard Extensible Rule Set allows use of any ground-legal frequency (27/49/50/53/75/900/2400 MHz in the United States) in any weight class. See the #18 for specific fail-safe requirements.
A. The usual solution is to use one transmitter and two receivers all on the same frequency. Put one receiver in each articulated section, plug the local ESC or weapon controller into the appropriate output slot and you're set. It's more reliable than running long extension leads from one side to the other and risking failure from flexed and twisted wires.
Some non-articulated 'bots also use two receivers for redundant back-up. JuggerBot / Tricerabot used twin receivers for separate dual-channel front and rear speed controllers. If either receiver or ESC failed, they could continue the match with at least partial power.
A: The Vex Robotics System radio control gear has a different data format than hobby R/C systems. It is not compatible with standard combat robot components. Use the HiTec!
Comment: I have some information to add to your answer to the question about the Vex radio system. The Vex transmitter uses pretty much standard Futaba data encoding, it's the receiver that's the problem. If you replace the receiver the system works just fine with standard R/C equipment.
I've tested the Vex transmitter with Microbotparts and Futaba AS receivers. They work well and can even use the Vex crystals. Microbotparts have a 6 channel receiver available for $29.95, though it is not on the webite -- just ask. I've also used the Vex transmitter with the Sombra Shadow 3 and Polk Hobbies' Seeker 6 synthesized receivers.
Great site, keep up the good work. [Wreno - North Texas Battle Group - BattleBots on the water with a WW2 theme]
Reply: Thanks, Wreno. I knew the data outputs of the Vex system weren't compatible with standard R/C, but didn't know the source of the problem. A 6-channel transmitter with crystals for that price is a bargain, but robot guys should be aware that the Vex transmitter has only primitive channel mixing and no ATV, fail safes, exponential response, or dual rates.
A: A pistol grip radio will work, but we use standard twin-stick transmitters: left stick forward and back for the speed controller, right stick 'side to side' controls the steering servo. No mixing required. You could put both throttle and steering on one stick, but we like them separate.
We set up our differential steering 'bots the same way, throttle on left stick and steering on the right, using elevon mixing. See our transmitter programming guide for more info on channel mixing.
A: Mark J. here: when an invertible robot is flipped upside down, left / right steering response remains correct but the throttle response is reversed; a forward transmitter command will back the robot up and vice versa. An 'inverted' switch reverses the response of your throttle to compensate for this, but you don't usually add-on an inverted switch -- it's already there:
A: Mark J. here: the Robot Fighting League accepts use of 27/49/50/53/75/900/2400 MHz radio systems for combat robot control in the USA, as long as the radio system has the required failsafe protocol for your weight class and weapon type. However, you must have an amateur radio operator license to legally operate a radio transmitter on either 50 or 53 MHz.
Be sure to check with the event organizer to make certain they don't require some specific radio type. Some events are talking about going to only 2.4 gHz 'spread spectrum' radios.
Q: How come a 72 MHz radio is not legal to use on ground-based vehicles?
A: Model aircraft are particularly sensitive to interference because their altitude gives them increased 'line of sight' reception. The Federal Communications Commission (FCC) made 72 MHz 'airborne only' to assure R/C pilots of clear channels without interference from somebody playing with an R/C dune buggy in a backyard miles away. To even things out, 75 MHz is restricted to 'surface only' uses. All other approved R/C frequencies may be used for either surface or air.
A: You have to pretty much fully enclose an antenna in a box of metal or other conductive material to block the radio signal by forming a Faraday cage. You'll want to keep your antenna spaced away from the metal surfaces and any source of electrical 'noise', but the signal will be able to penetrate thru the plastic sidewalls. Check the Ask Aaron Radio Reception Problems page for more info.
A: The 2007 RFL Ruleset says:
So, digital 2.4 GHz and 900 MHz radio systems are cleared to control any weight class 'bot with either active or inactive weaponry -- equivalent to coded FM.
A: Non-conductive materials like wood, glass fiber composites, and plastics are transparent to commonly used R/C radio frequencies.
A: The Vex Robotics System radio control gear has a non-standard data output format from the receiver. It is not compatible with standard combat robot components. Use the HiTec!
A: Both metal and carbon fiber block radio signals. If the metal or carbon armor completely encloses the 'bot, the radio antenna must stick out thru the armor, or be mounted under a radio-transparent 'window'. See the Ask Aaron Radio Reception Problems page for more info.
A: The 'C' relates to the capacity of the battery pack: a pack with a capacity of 3000 mAh has a 'C' of 3000 mA, or 3 amps. If the maximum discharge rate for that pack is given as '20C', it would be 20 times 3 amps = 60 amps. If you exceed the maximum discharge rate you will risk overheating and damaging the pack, and even setting the pack on fire!
A: Robotlogic.com makes a three-wheel omni mixer called the OMX-3. They also make a Mecanum mixer for four-wheeled Mecanum omnibots.
With the mixer installed, you may assign any stick axis you like for forward / reverse, left / right, and rotate. Search the Ask Aaron archive for more information on omnibots.
A: All freshly charged rechargeable battery packs will read a higher resting voltage than their rating. When placed under load, the voltage will drop down toward the rated voltage. Hitec says the servo will run on a 7.4 volt LiPoly, so don't worry about the extra volt in the resting state -- run it!
A: Mark J. here: a three-cell lithium polymer battery can be safely drained down to 8.4 volts, so running into the 9 volt cutoff is fine. The usual cause of damage to Lipoly batteries is overheating caused by too high a discharge rate. Temperatures over 140 degrees can damage or destroy the pack. Leave some space around the battery for cooling air circulation and keep the discharge rate within the manufacturer's spec. A well cared for Lipoly battery can exceed 1000 charge/discharge cycles. Check the Electrifly Lipoly Manual for more tips on care and disposal.
A: You can mix channels with a computerized transmitter, a plug-in electronic mixer, or a twin-channel controller with built-in mixing. All of them produce the same control style: one control channel (stick axis or throttle trigger) moves the 'bot forward and back, while a second channel (stick axis or wheel) controls turning. If you activate only the turning channel, the 'bot will spin in place without moving forward or back -- just like throwing the control sticks in opposite directions when working tank-style.
A: Mark J. here: even small combat robots don't use alkaline batteries! Alkalines are designed to operate in devices with a low current requirement. They cannot provide anywhere near the peak current that NiCad or NiMHd rechargeable batteries can, and in a permanent magnet DC motor current equals torque.
A typical alkaline 9-volt battery can provide just over 1 amp of current, and will last a VERY short time at that current draw. Your screwdriver motors will need at least 5 amps each to develop their full pushing torque potential. A sumo robot that can't push is pretty useless.
A modern AA size NiCad or NiMHd cell can pump out 8 to 10 amps of torque-grinding current and keep it up long enough for a full sumo match. An 8-cell pack will give you a nominal 8.4 volts and would be a far better choice for your 'bot than 9-volt alkalines. Simple chargers for NiCad / NiMHd packs are inexpensive and the charging process is uncomplicated.
Your other choice is a lithium polymer battery. LiPolys are very light and compact for their power capacity, but are more expensive and have lower peak current capacity than NiCads or NiMHd packs of equivalent amp/hour rating. LiPolys also require a different type of charger than other rechargeable packs -- never try to charge a LiPoly battery with a charger not specifically designed for the purpose. A good article on LiPoly care can be found at electrifly.com
A: Twist three wires together, solder, and insulate with heat-shrink tubing. Do not use 'bullet crimp' or 'twist' connectors on a combat robot -- they can fail under impact and vibration. Use stranded wire instead of solid-core for the same reason.
Q: Could I make a 'Y' shape in my wire with 3 ring terminal conectors held together with a nut and bolt?
A: Don't do that! You'd have three 'crimp' connections each subject to failure, plus a nut and bolt that could vibrate loose. It would also be heavy and bulky. Even though I don't like them, you'd be better off using a 'wire nut' twist connector to hold your three wires together. Best solution: learn to solder.
Will I be able to use just one control stick (forward, backward, left, right) to control the movement of my robot, or will I have to use two sticks, one for each motor? Thanks!
A: Take a look at my dad's Beginners guide to combat robot gyros page.
R/C gyros are NOT COMPATIBLE with either two-stick (tank style) steering or transmitter mixed single-stick steering. If you're using a gyro, you'll need to use either a stand-alone plug-in electronic channel mixer between your gyro and the ESC, or use an ESC with built-in mixing. Either of these will give you single-stick control.
Many dual-channel ESCs offer built-in mixing: Barello ANT, SOZBots M, Scorpion XL, Vantec RDFR, etc. Check before you buy.
A: Most combat robots turn by 'skid steering' where the wheels on one side of the 'bot turn at a different speed and/or in a different direction than the wheels on the other side. This requires independent control of drive motors on each side of the 'bot. You can operate this type of 'bot by controlling the two sides of the 'bot with vertical motion of the two control sticks on a 'stick' style R/C transmitter (called 'tank steering') but most drivers prefer forward/reverse speed control with vertical motion of one stick and steering with horizontal motion of either the same or the second stick.
By electronically 'mixing' the output of two R/C channels, you can have the vertical motion of one stick (or the throttle trigger on a 'pistol' style transmitter) instruct both drive motors to move the 'bot forward or backward, and the horizontal motion of a stick (or the 'pistol' steering knob) tell the motors to spin at different speeds. This is called 'differential steering'.
More expensive R/C equipment and some dual-channel motor controllers have channel mixing capability built-in. See our transmitter programming guide for more info on computerized radio transmitters, and our electronic gyro guide for help integrating mixers with gyros. If your equipment does not have mixing built in, you can buy a small electronic channel mixer that plugs into your system between the receiver and the speed controllers that will provide the same functions.
I have two ANT 100 ESCs. I plan to connect two drive motors to one and two weapon motors to the other. Can I connect the two ESCs to one 7.2V NiCad battery? Will the battery be able to provide the power for the two ESC and the four motors? If not, what voltage do I need? Do I need one battery for each ESC?
Thank You.
A: Thanks for your compliment about the site!
The short answer to your question is yes -- you can connect multiple Electronic Speed Controllers to a single battery if you connect them as parallel circuits. See the diagram and description of basic robot wiring in the Frequently Asked Questions section.
The longer answer involves the capacity of your battery to provide the current needed by your motors. Your battery must be able to supply enough current (not voltage) to meet the demands of all the motors at once. NiCad batteries can provide a lot of current to meet heavy load conditions, but if the load becomes too great the voltage output will drop. The Ant 100 ESC also supplies power to your radio receiver and if the voltage drops your receiver can start to 'glitch'. Other types of batteries are less able to meet high amperage drains. Lithium batteries can dangerously overheat if the current demand gets too high, resulting in damage to the battery and even fire!
Adding extra cells to your battery pack to raise the voltage is not a good solution. Higher voltage will create a demand by your motors for even more current and your voltage fluctuation will increase. Add up the maximum current consumption for all four of your motors and use a battery with enough capacity to meet that demand.
One last thing: I mentioned above that the Ant 100 supplies power to your radio receiver. Since you'll be using two Ant 100s, you might run into trouble with both of them trying to power the receiver. You'll want to remove both of the red wire connections from the receiver cables coming from one of the ESCs -- either one. You can clip the red wires, desolder them from the circuit board, or remove the connectors from the receiver plugs.
A: Mark J. here: a battery charging jack is a very useful addition to your 'bot. It will minimize charging mistakes in the pits and save critical time between matches.
Select a power plug and wires rated for at least the maximum output of your charger. Find a mounting spot protected from damage but with easy access. The jack will be 'live' to the main battery power, so protect it from accidental shorting!
The jack is wired into the main power cables, between the battery disconnect plug (optional, but handy) and the master power switch. See the diagram at right for details. Check the event rules to determine what type of master power switch is required for your weight class -- a 'removable link' disconnect may be required.
With this set-up, the battery may be charged with the master power switch 'off' for safety, and the battery may be quickly removed or replaced while the charging jack remains with the 'bot.
Q: What type of power plug do you recommend for a heavyweight 'bot charging jack?
A: I use Anderson PowerPole connectors for charger plugs on our larger 'bots. They are available in 15/30/45 amp ratings, have no exposed metal, may be crimped or soldered in place, and require no 'heat shrink' insulation. The PowerPole connectors are available at many hobby shops. Pre-assembled wire sets with PowerPole connectors are available thru 'Team Delta'.
A: Take a look at the diagram and description of basic robot wiring, Alan. Wire in your power switch where the removable power link is in the diagram -- combat robot tournaments often require a removable link instead of a switch. Your multiple lights will replace the single power indicator light in the diagram.
Q: Thanks for your advice. Just to clarify, do I attach three wires to each battery lead and run one + and one - to each ESC and the lights? Thank you very much for your reply.
A: That's right, Alan -- the ESCs and lights are connected in parallel to the battery. Don't forget to insert your switch between one battery lead and the device connections.
Q: I forgot to ask you this question last time. The different parts for my robot have wires of different gauges. Do I have to replace all the wires in one gauge? Will the robot function with wires in various gauges connecting together? Thanks for your reply.
A: Don't worry about the different wire gauges, Alan. The important thing is that the smallest wire in a given circuit is capable of carrying the largest expected current for that circuit. Bigger wire is OK, but smaller wire can overheat under the load, melt thru the insulation, and short out. As long as your robot components are operating within their rated voltage, you should be able to trust that the manufacturer has provided wire of adequate size. Hook 'em up and run 'em!
A: No -- American Wire Gauge (AWG) sizes measure the conductor only, not counting any insulation. The conductor diameter of 18 gauge wire is about 0.04 inch (1.02 mm).
A: Shortening the antenna that much will certainly reduce reception, but you may still have plenty of range. Give it a test run and see how it does.
If you decide to repair the antenna, you can just solder on a length of similar gauge insulated wire to restore the length. Cover the solder joint with heat shrink tubing or a flap of vinyl tape to prevent accidental grounding of the antenna. If you are comfortable soldering PC boards you can open the receiver case, remove the damaged antenna entirely, and solder on a new wire of the correct length.
Q: What is impedance? I hear that even if I solder on a length of similar gauge insulated wire to restore the length, I need the correct impedance as well.
A: Mark J. here: Impedance is a measure of the opposition of an electrical component (like an antenna) to an alternating current (like a radio signal). A proper antenna must have its impedance match the other elements of the system to maximize signal strength.
The main factor determining the impedance of your simple wire antenna is length. Restoring the antenna length by soldering on a length of similar wire will restore the impedance to that of the original antenna.
A: Mark J. here: How quickly you throw the stick forward shouldn't matter to the radio system, so I don't think your problem is entirely with the transmitter set-up.
First, check the set-up procedure in the manual for your Electronic Speed Control (ESC) to make certain that the unit is correctly adjusted to work with your radio. An ESC requires careful adjustment to assure that the motors will respond correctly throughout the entire range of transmitter stick motion. Make certain that your transmitter trim settings are centered during ESC set-up.
Once the ESC is correctly set, the transmitter trim should be adjusted so that both wheels start turning at the same time when the stick is gently pushed forward or back. If you're still veering to one side, reduce the Adjustable Travel Volume (ATV) transmitter setting for the side of the 'bot that is running too fast.
If rapid acceleration is still a problem, check for equal weight on the drive wheels on both sides of the 'bot. If one side of the 'bot has more weight it will get better traction and can cause a spin under hard acceleration. You may need to move some components on the chassis to equalize weight. Backing up may mask the problem by reducing traction to both drive wheels.
For a 4-wheel 'bot, make sure all four wheels are in good contact when the 'bot is on a level surface. Adjust the chassis or motor mounts to correct if required.
For additional help on transmitter set-up, I suggest reading thru my guide to programming radio systems for combat robots. I wrote it with specific reference to Futaba systems, but the general tips are useful for any computer radio.
A: You probably saw the IFI Isaac Control System that is commonly used at the BattleBots IQ competitions. Some builders use this system at other competitions as well.
The IFI system accepts a variety of analog PC joysticks as external controllers. These are the same joysticks you can buy at your computer store. PC joysticks are not compatible with standard R/C transmitters.
A: Check the diagram at the right to see what gets connected to what. Solder the connections with rosin core solder and a non-acid flux. Watch out for sharp points on your connections that could poke thru insulation -- file smooth any rough edges. Large diameter 'heat shrink' plastic tubes are available at R/C hobby shops that will insulate the pack and hold it all together. Smaller diameter heat shrink does a great job of insulating the connector terminals.
A: NiCad or NiMHd cells come with or without metal tabs welded to either end. You can solder your wires to the tabs or directly to the cells. If you're soldering directly to the cell, you'll need a soldering iron with enough power to do the job quickly without heating up the whole cell -- maybe 25 watts. Use rosin core solder and a little non-acid flux.
A: Mark J. here: the operating frequency of your radio does not effect the ability of the system to accommodate a lifting servo. However, the 27 MHz band is used by both 'toy' radios and 'hobby-grade' radio systems. Toy radios are not compatible with hobby grade components like servos.
Toy radios in the USA are on either the 27 MHz or 49 MHz bands. Hobby grade radio systems are commonly available in the USA for the 27 MHz, 72 MHz (aircraft only), and 75 MHz (non-aircraft) frequency bands.
A: Mark J. here: We need to be careful not to mix apples and oranges:
AM (amplitude modulation)and FM (frequency modulation) are two methods of adding information onto a radio wave. All hobby radios are either AM or FM. Of those two methods, FM is less susceptible to electrical 'noise' interference.
PPM (pulse position modulation) and PCM (pulse code modulation) are two methods of encoding the information for radio control before it is added to the radio wave.
A: Mark J. here: Is that the middleweight flamethrower from Minnesota? I don't know about their radio, but the homebrew radio systems I've seen from the few other teams to try it were unreliable and had no advantages over off-the-shelf systems. If you just happen to have a degree in electrical engineering and a lot of time to spend designing, building, and de-bugging a radio system -- go for it. If you want something that works, stick with a professionally built system.
A: Critter Crunch has been fighting robots for a long time. Their first tournament was years before the first Robot Wars, but their rules are, ummmm... different. They do allow both 2 pound and 20 pound robots to operate with a wire cable instead of radio control. The circuit for each motor and weapon runs from the battery thru a long cable to a control box then back thru the cable to the motor/weapon. The control box has switches and maybe rheostats to control the motors. The cable wires have to be heavy enough to carry the motor current, and the robot has to drag the long, heavy cable behind it.
Critter Crunch also allows R/C robots, so why not build a 'bot that can enter other contests?
A: No functional difference. The only reason Robot Marketplace carries the discontinued Thor 883 is so builders who have a pair and smoke one can get an exact replacement.
A: Sure - as an expensive smoke bomb.
A: It would save time if people would check Robot Marketplace before asking me any question that starts with "Where can I buy a...".
Pretty much any place that sells R/C equipment will offer systems with computerized mixing. For a 'bot, you'll want a system on the 75MHz band. Guess what? Robot Marketplace sells a very nice [no longer available] 'Hitec Laser 6 FM System' for less than $135. Check with your local hobby shop as well.
You can also find Electronic Speed Controllers with built-in mixing at (wait for it...) Robot Marketplace.
A: Mark J. here: the IFI Isaac Control System has long been the mandatory R/C system for the BattleBots IQ competition. However, the system has been discontinued by IFI, and used systems are in short supply. BBIQ now strongly encourages the use of the Isaac system, but approves alternate systems on a case-by-case basis.
The Isaac controller is a 'smart' system that prevents radio interference and the need for frequency control and transmitter impound at tournaments. This makes things run much more smoothly for the tournament director. The Isaac also interfaces to the tournament computer and allows the director to remotely shut down power to all 'bots instantly - a big safety plus!
A: An ESC designed to interface with a hobby R/C receiver should have a plug already installed that will fit directly into the channel output socket of your choice on the receiver. See the 'bot wiring diagram. Ask the manufacturer of your ESC for additional info, if needed.
A: Mark J. here: radio systems are assigned to operate on specific frequency 'bands'. Both of the frequency bands you mention are available for use by R/C toys. MHz refers to how many million times per second the radio 'cycles' -- 27 million cycles per second for the 27 MHz radio.
Within each band are several specific frequencies to which a radio system may be tuned. A radio tuned to a specific frequency will not interfere with a radio operating on another frequency.
See also this earlier post.
A: You can scavenge the speed controller out of a toy or servos if you're really cheap, but remember: 'cheap' and 'combat robot' don't mix. If you're going to invest your time and effort, don't allow cheap components to let you down!
A: Two-wheeled robots can be difficult to drive in a straight line without veering to one side and they don't turn in a smooth arc. A piezo gyro senses turning motion, compares it the signal coming from the R/C receiver, and adjusts the signal to the electronic speed controller to keep the robot on the course the driver wants.
My dad has a whole webpage about gyros and combat robots that should answer any additional questions.
A: Mark J. here. The message doesn't seem to be getting thru: cheap and robot combat don't mix. You're going to spend a lot of time and effort building your 'bot and going to the tournament. When some component fails in combat and puts you out of the match, you're gonna wish you hadn't gone cheap.
That said, Tower Hobbies has a Hitec 3-channel pistol grip FM system for $69.99. You'll need either an ESC with built-in mixing or a separate elevon mixer to use it with a 'bot. Inertia Labs will sell you a GWS 4-channel twin-stick FM system for $89.90 (transmitter with crystal $59, micro receiver $21.95, receiver crystal $8.95) that does not require a mixer. Best luck.
A: Mark J. here: a piezoelectric crystal can be made to vary its electrical properties at a very precise frequency. When incorporated into a radio oscillator circuit, the crystal controls the frequency 'channel' on which the set operates. Hobby R/C systems have removable crystals in both the transmitter and receiver that can be replaced with crystals of a slightly different frequency to tune the system to a different channel and avoid interference from other radios.
R/C systems normally come with one set of crystals. Robot tournaments usually require that you have crystals for at least two different channels, so plan to buy a second set. There are different types of crystals for AM, FM single conversion, and FM double conversion -- make sure you get a set that matches your radio.
A: It doesn't take a whole hand to control a R/C channel -- you can easily control two with one finger. R/C airplane guys have to balance throttle, rudder, elevator, aileron, flaps, and landing gear controls. We've got it easy!
For a 'bot, throttle and steering take two sticks if you use simple tank-steer, but you can electronically 'mix' two channels and put both throttle and steering on a single stick operated by one thumb. The on/off control for the weapon can be assigned to a toggle switch that you can flip with an index finger. That leaves seven fingers and a thumb that aren't doing anything except holding the transmitter.
Different manufacturers have slightly different control layouts, but you can see a diagram of a typical Futaba transmitter and get more radio tips at my dad's page: Programming the Futaba 6XAPs for Combat Robotics. I usually run the weapon from the channel 5 toggle switch.
A: Mark J. here: LiPoly batteries have excellent charge retention and capacity recovery after storage. A LiPoly battery stored for six months at room temperature will recover about 95% of its capacity on the first charge cycle. It's still a good idea to discharge/charge cycle your rechargeable battery (LiPoly, NiCad, NiMHd) a couple of times before a competition to assure full capacity. Always follow the manufacturer's procedure for cycling.
A: Make sure the batteries in the car and the transmitter are fresh. If this doesn't help, as a last resort you might want to open up the car to expose the electronics board. There will be a couple of screw adjustments on the board, sealed with a thick, waxy material. Pick one adjuster, scrape away the wax, mark the starting position of the adjuster, and try turning the adjustment screw a little one way and the other to see if the range improves. If not, return it to the starting position and tweak another adjuster. Do NOT try this with the transmitter!
A: Mark J. here: In the USA the "AM Band" refers to commercial radio broadcast frequencies between 520 kHz and 1720 kHz -- a kilohertz is 1000 cycles per second. 49 MHz (49 million cycles per second) band is a 'public service' frequency range a little below VHF television broadcast. It's shared by older wireless phones, baby monitors, and five toy R/C channels. Other toy R/C systems operate on 27 MHz on six frequencies squeezed in between CB radio channels.
Toy R/C systems on 27 or 49 MHz use interference-prone Amplitude Modulation (AM) signals, but 'hobby grade' R/C gear on 27, 72, and 75 MHz use either AM or FM (Frequency Modulation) signals.
A: The Robot Marketplace and Tower Hobbies are both good on-line sources of 75 MHz 'ground frequency' radio systems, but don't forget to check with your local hobby shop!
It's also possible to have a 72 MHz radio converted to 75 MHz. Tower hobbies offers this service on new systems, and a web search will turn up other specialty shops that will do this.
A: Mark J. here: Micro receivers are 'single conversion' designs that are more sensitive to interference than the 'double conversion' design usually found in standard receivers, but if you're only getting 5 feet of reception distance you have problems other than your receiver. Electric motors create a lot of electrical 'noise' that can be a problem -- try adding anti R.F. capacitors across the motor leads. Position the receiver as far away from the motors and ESC as possible. Stretch out the receiver antenna and get it out in the open air, away from metal or carbon armor.
Check the Ask Radio Reception Problems page for more info on the topic.
A: Tech question, Mark J. here: You'll get a nice puff of smoke followed by a quick trip to the trash bin. Solid state switching controls are rated for a maximum amperage flow. Doubling the voltage to a motor also doubles the maximum amperage, so you've already taken the unit to twice it's design limit. I suspect that if you got into a pushing match you'd fry the controller as is. Bigger motor = more amperage = thermal meltdown. Note that not many R/C receivers can handle 12 volts -- try that at your own peril.
A: A remote control transmitter sends variable control signals for several `channels' based on stick, switch, and knob positions on the transmitter. The receiver deciphers the signal and sends separate signals to the channel ports. You can plug various devices into channel ports that read the signals and turn them into mechanical action (servos), variable current flow (electronic speed controllers), or on/off switches (R/C switches). Connect drive motors to the speed controllers, a lifter to the servo, and a weapon to the R/C switch and you've got control of your robot. For more on robot control systems, see: 4QD Robot Control website.
A: Some combat robot ESCs have a short set-up process, but it isn't programming. Some brushless motor controllers have more elaborate programming capability, but most work fine with the default settings. More sophisticated radio systems can be programmed by selecting options from menus for things like channel mixing, but it isn't required to provide basic radio functions. See my dad's page on programming transmitters for details.
A: Tech question, Mark J. here: AWG wire sizes run opposite from the way you'd think, with larger numbers indicating smaller diameter wire. For small wire, amperage capacity approximately doubles with each decrease of three number sizes (thicker wire). A 22 gauge copper wire is conservatively rated to carry 7 amps in conditions found in a combat robot. You might get away with it, but I'd suggest 18 gauge for at least the battery to ESC hookup -- or you could use double strands of 22 gauge if that's what you have.
Always use 'multi-strand' wire in your robot, not solid-core. Solid core can break from repeated flexing and shock.
A: Technical question - Mark J. here: Yes, there are a few:
A: Check with the event organizer before attempting to use any 'cheap' radio system in a 'bot with a spinning weapon. Many combat rules sets require specific safety measures for weapon safety that are not available in inexpensive radios. For robot combat it isn't smart to try to save money on your radio system.
|